Expediting population diversification in evolutionary computation with quantum algorithm
by Jun Suk Kim; Chang Wook Ahn
International Journal of Bio-Inspired Computation (IJBIC), Vol. 17, No. 1, 2021

Abstract: Quantum computing's uniqueness in commencing parallel computation renders unprecedented efficient optimisation as possible. This paper introduces the adaptation of quantum processing to crowding, one of the genetic algorithmic procedures to secure undeveloped individual chromosomes in pursuit of diversifying the target population. We argue that the nature of genetic algorithm to find the best solution in the process of optimisation can be greatly enhanced by the capability of quantum computing to perform multiple computations in parallel. By introducing the relevant quantum mathematics based on Grover's selection algorithm and constructing its mechanism in a quantum simulator, we come to conclusion that our proposed approach is valid in such a way that it can precisely reduce the amount of computation query to finish the crowding process without any impairment in the middle of genetic operations.

Online publication date: Mon, 01-Mar-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com