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Abstract: The introduction of modern information technologies for collecting and processing
agricultural data revolutionise the agriculture practices. The agricultural data mining today is
considered a Big Data application in terms of volume, variety, velocity and veracity. Hence,
it is a challenge and a key foundation to establishing a crop intelligence platform. The platform,
which processes vast amounts of complex and diverse information, will enable efficient resource
management and high quality agronomy decision making. In this paper, we designed and implemented
a continental level agricultural data warehouse (ADW). ADW is characterised by its (1) flexible
schema; (2) data integration from real agricultural multi datasets; (3) data science and business
intelligent support; (4) high performance; (5) high storage; (6) security; (7) governance and
monitoring; (8) consistency, availability and partition tolerant; (9) cloud compatibility. We also
evaluate the performance of ADW and present some complex queries to extract and return necessary
knowledge about crop management.
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1 Introduction

Annual world cereal productions were 2608 million tons
and 2, 595 million tons in 2017 and 2018, respectively
(USDA report, 2018; FAO-CSDB report, 2018). However,
there were also around 124 million people in 51 countries
who faced food crisis and food insecurity (FAO-FSIN report,
2018). According to United Nations (UN document, 2017),
we need an increase 60% of cereal production to meet 9.8
billion people’s needs by 2050. To satisfy the huge increase
in demand for food, crop yields must be significantly increased
using modern farming approaches, such as smart farming also
called precision agriculture. As highlighted in the European
Commission report (EC report, 2016), precision agriculture
is vitally important for the future and can make a significant
contribution to food security and safety.

The precision agriculture’s current mission is to use the
decision-support system (DSS) based on Big Data approaches
to provide precise information for more control of waste and
farming efficiency, such as soil nutrients (Rogovska et al.,
2019), early warning (Rembold et al., 2019), forecasting
(Bendre et al., 2015), irrigation systems (Huang et al., 2013),
evapotranspiration prediction (Paredes et al., 2014), soil and
herbicide and insecticide   optimisation (Ngo and Kechadi, 2020),
awareness (Lokers et al., 2016), supply chain (Protopop
and Shanoyan, 2016) and financial services (Ruan et al.,
2019). Normally, the DSSs implement a knowledge discovery
process also called data mining process, which consists of
data collection and data modelling, data warehousing, data
analysis (using machine learning or statistical techniques), and
knowledge deployment (Dicks et al., 2014). Hence, designing
and implementing an efficient agricultural data warehouse
(ADW) is one of the key steps of this process, as it defines
a uniform data representation through its schema model and
stores the derived datasets so that they can be analysed to
extract useful knowledge. However, currently, this step was
not given much attention. Therefore, there are very few reports
in the literature that focus on the design of efficient ADWs
with the view to enable   agricultural Big Data analytics and
mining. The design of large scale ADWs is very challenging,
because  the agricultural data is spatial, temporal, complex,
heterogeneous, non-standardised, high dimensional, collected
from multi-sources, and very large. In particular, it has all the
features of Big Data; volume, variety, velocity and veracity.
Moreover, the precision agriculture system can be used by
different kinds of users at the same time, for instance by
farmers, policymakers, agronomists, and so on. Every type of
user needs to  analyse  different  information, thus  requiring
specific analytics.

Unlike in any other domains, such as health-care,   financial   data,
etc, the data and its warehousing in precision agriculture are
unique. This is because there are very complex relationships
between the agricultural data dimensions. The data sources
are very diversified and varying levels of quality. Precision
agriculture (PA) warehousing has many decision-making
processes and each needs different levels of data access
and different needs of analysis. Finally, there are many
stakeholders involved in the data ownership and exploitation.
So, the data has significant number of uncertainties. For

examples, the quality of data collected by farmers depends
directly on their knowledge, routines and frequency of
information recording, and support tools, etc. All these issues
make the PA data unique when it becomes to its storage, access,
and analysis. These issues may exist in other domains, but not
at the same scale and as in agriculture practices.

In this research, we firstly analyse real-world agricultural
Big Data to build the effective constellation schema. From
this schema, some simple questions can be easily answered
directly from the modelled data. These questions include:

• For a given field, what kind of crops are suitable to
grow?

• Which companies can purchase a specific crop with the
highest price in the past season?

• List the history of soil texture and applied fertilisers for
a given field.

• List costs of production for wheat and barley in the last
five years, and so on.

Secondly, the proposed ADW has enough main features and
characteristics of big data warehouse (BDW). These are

• high storage capacity, high performance and cloud
computing compatibility

• flexible schema and integrated storage structure

• data ingestion, monitoring, and security to deal with the
data veracity. Besides, an experimental evaluation is
conducted to study the performance of ADW storage.

The rest of this paper is organised as follows: in the next
section, we review  the related work about decision support
systems and data warehouses in agriculture. In Sections 3–5,
we presented big data aspects of PA, our ADW architecture
and its modules. In Sections 6–9, the quality criteria,
implementation, performance analysis and decision-making
applications of the proposed ADW are presented respectively.
Section 10 gives some concluding remarks and future research
directions. Finally, a concrete example about the ADW and its
operational average run-times are shown in the appendix.

2 Related work

In precision agriculture, DSSs are designed to support different
stakeholders such as farmers, advisers and policymakers to
optimise resources,  support farms’ management and improve
business practices (Gutierreza et al., 2019). For instance, DSSs
were built to

• manage microbial pollution risks in dairy farming
(Oliver et al., 2017)

• analyse nitrogen fertilisation from satellite images
(Lundstrom and Lindblom, 2018)

• control pest and disease under uncertainty in climate
conditions (Devitt et al., 2017)
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• manage drip irrigation and its schedule (Friedman et al.,
2016)

• predict and adopt climate risks (Han et al., 2017).

However, the datasets that were used in the mentioned
studies are small. Besides, they focused on using visualisation
techniques to assist end-users understand and interpret their
data.

Recently, many papers have been published on how to
exploit intelligent algorithms on sensor data to improve
agricultural economics (Pantazi, 2016; Park et al., 2016;
Hafezalkotob et al., 2018; Udiasa et al., 2018) and Rupnik
et al. (2019). In Pantazi (2016), the authors predicted crop yield
by using self-organising-maps; namely supervised Kohonen
networks, counter-propagation artificial networks and XY-
fusion. In Park et al. (2016), one predicted drought conditions
by using three rule-based machine learning; namely random
forest, boosted regression trees, and Cubist. To select the
best olive harvesting machine, the authors in Hafezalkotob
et al. (2018) applied the target-based techniques on the
main criteria, which are cost, vibration, efficiency, suitability,
damage, automation, work capacity, ergonomics, and safety.
To provide optimal management of nutrients and water, the
paper Udiasa et al. (2018) exploited the multi-objective genetic
algorithm to implement an E-Water system. This system
enhanced food crop production at river basin level. Finally,
in Rupnik et al. (2019) the authors predicted pest population
dynamics by using time series clustering and structural change
detection which detected groups of different pest species.
However, the proposed solutions are not scalable enough to
handle agricultural Big Data; they present weaknesses in one
of the following aspects: data integration, data schema, storage
capacity, security and performance.

From a Big Data point of view, the papers Kamilaris
et al. (2018) and Schnase et al. (2017) have proposed
“smart agricultural frameworks”. In Kamilaris et al. (2018),
the authors used Hive to store and analyse sensor
data about land, water and biodiversity which can help
increase food production with less environmental impact.
In Schnase et al. (2017), the authors moved toward a
notion of climate analytics-as-a-service, by building a
high-performance analytics and scalable data management
platform, which is based on modern cloud infrastructures, such
as Amazon web services, Hadoop, and Cloudera. However,
the two papers did not discuss how to build and implement a
DW for a precision agriculture.

The proposed approach, inspired from Schulze et al.
(2007), Schuetz et al. (2018), Nilakanta et al. (2008) and
Ngo et al. (2018), introduces ways of building ADW. In
Schulze et al. (2007), the authors extended entity-relationship
concept to model operational and analytical data; called multi-
dimensional entity-relationship model. They also introduced
new representation elements and showed how can be extended
to an analytical schema. In Schuetz et al. (2018), a relational
database and an RDF triple store were proposed to model
the overall datasets. The data is loaded into the DW in RDF
format, and cached in the RDF triple store before being
transformed into relational format. The actual data used for
analysis was contained in the relational database. However, as

the schemas used in Schulze et al. (2007) and Schuetz et al.
(2018) were based on entity-relationship models, they cannot
deal with high-performance, which is the key feature of a data
warehouse.

In Nilakanta et al. (2008), a star schema model was used.
All data marts created by the star schemas are connected via
some common dimension tables. However, a star schema is
not enough to present complex agricultural information and
it is difficult to create new data marts for data analytics. The
number of dimensions of the DW proposed in Nilakanta et al.
(2008) is very small; only three dimensions   – Species, Location,
and Time. Moreover, the DW concerns livestock farming.
Overcoming disadvantages of the star schema, the authors of
Ngo et al. (2018) and Ngo and Kechadi (2020) proposed a
constellation schema for an agricultural DW architecture in
order to satisfy the quality criteria. However, they did not
describe how to design and implement their DW.

3 Crop big data

3.1 Crop datasets

The datasets were primarily obtained from an agronomy
company, which extracted it from their operational data
storage systems, research results, and field trials. Especially,
we were given real-world agricultural datasets on iFarms,
Business-to-Business (B2B) sites, technology centres and
demonstration farms. Theses datasets were collected from
several European countries and they are presented in Figures 1
and 2 (Origin report, 2018). These datasets describe more
than 112 distribution points, 73 demonstration farms, 32
formulation and processing facilities, 12.7 million hectares of
direct farm customer footprint and 60, 000 trial units.

Figure 1 Data from UK and Ireland (see online version
for colours)

There  are a total of 29 datasets. On average, each dataset
contains 18 tables and is about 1.4 GB in size. Each dataset
focuses  on  a  few   details that   impact  the  crop.   For
instance, the weather dataset includes information on location
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of weather stations, temperature, rainfall and wind speed
over time. Meanwhile, soil component information in farm
sites, such as mineral, organic matter, air, water and micro-
organisms, were stored in the soil dataset. The fertiliser dataset
contains information about field area and geographic position,
crop name, crop yield, season, fertiliser name and quantity.

Figure 2 Data in continental Europe (see online version
for colours)

3.2 Big   Data challenges

Raw and semi-processed agricultural datasets are usually
collected through various sources: internet of thing (IoT)
devices, sensors, satellites, weather stations, robots, farm
equipment, farmers and agronomists, etc. Besides, agricultural
datasets are very large, complex, unstructured, heterogeneous,
non-standardised, and inconsistent. Hence, it has all the
features of Big Data.

• Volume: The amount of agricultural data is increasing
rapidly and is intensively produced by endogenous and
exogenous sources. The endogenous data is collected
from operational systems, experimental results, sensors,
weather stations, satellites, and farming equipment. The
systems and devices in the agricultural ecosystem can
be connected through IoT. The exogenous data concerns
the external sources, such as government agencies,
retail agronomists, and seed companies. They can help
with information about local pest and disease outbreak
tracking, crop monitoring, food security, products,
prices, and knowledge.

• Variety: Agricultural data has many different forms and
formats, structured and unstructured data, video,
imagery, chart, metrics, geo-spatial, multi-media,
model, equation, text, etc.

• Velocity: The collected data increases at very high rate,
as sensing and mobile devices are becoming more
efficient and cheaper. The datasets must be cleaned,
aggregated and harmonised in real-time.

• Veracity: The tendency of agronomic data is uncertain,
inconsistent, ambiguous and error prone because the
data is gathered from heterogeneous sources, sensors
and manual processes.

3.3 ADW schema

The DW uses schema to logically describe the entire datasets.
A schema is a collection of objects, including tables, views,
indexes, and synonyms which consist of some fact and
dimension tables (Oracle document, 2017). The DW schema
can be designed based on the model of source data and the
user requirements. There are three kind of models, namely
star, snowflake and fact constellation. With the its various uses,
the ADW schema needs to have more than one fact table and
should be flexible. So, the constellation schema, also known
galaxy schema, should be used to design the ADW schema.

We developed a constellation schema for ADW and it is
partially described in Figure 3. It includes few fact tables
and many dimension tables. FieldFact fact table contains data
about agricultural operations on fields. Order and Sale fact
tables contain data about farmers’ trading operations. The key
dimension tables are connected to their fact table. There are
some dimension tables connected to more than one fact table,
such as Crop and Farmer. Besides, CropState, Inspection, Site,
and Weather Reading dimension tables are not connected to
any fact table. CropState and Inspection tables are used to
support Crop table. While, Site and Weather Reading tables
support Field and WeatherStation tables. FieldFact fact table
saves the most important facts about the field; yield, water
volume, fertiliser quantity, nutrient quantity, spray quantity
and pest number. While, in Order and Sale tables, the important
facts needed by farm management are quantity and price.

Figure 3 A part of ADW schema for precision agriculture
(see online version for colours)
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The dimension tables contain details on each instance of
an object involved in a crop yield or farm management.
Figure 4 describes attributes of Field and Crop dimension
tables. Field table contains information about name, area,
coordinates (being longitude and latitude of the centre point
of the field), geometric (being a collection of points to show
the shape of the field) and site identify the site that the field
it   belongs  to. Crop   table  contains  information   about
name, estimated yield of the crop (estYield), BBCH Growth
Stage Index (BbchScale), harvest equipment and its weight.
These provide useful information for crop harvesting.

Figure 4 Field and Crop dimension tables (see online version
for colours)

Figure 5 describes attributes of Soil and Pest dimension tables.
Soil table contains information about   pH value (a measure
of the acidity and alkalinity), minerals (nitrogen, phosphorus,
potassium, magnesium and calcium), its texture (texture label
and percentage of Silt, Clay and Sand), cation exchange
capacity (CEC) and organic matter. Besides, information about
recommended nutrient and testing dates ware also included in
this table. In Pest table contains name, type, density, coverage
and detected dates of pests. For the remaining dimension
tables, their main attributes are described in Table 1.

Figure 5 Soil and Pest dimension tables (see online version
for colours)

4 ADW architecture

A DW is a federated repository for all the data that an
enterprise can collect through multiple heterogeneous data
sources; internal or external. The authors in Golfarelli and
Rizzi (2009) and Inmon (2005) defined DW as a collection of
methods, techniques, and tools used to conduct data analyses,
make decisions and improve information resources. DW is
defined around key subjects and involves data cleaning, data
integration and data consolidations. Besides, it must show its
evolution over time and is not volatile.

The general architecture of a typical DW system includes
four separate and distinct modules; raw data, extraction
transformation loading (ETL), Integrated Information and
Data Mining (Kimball and Ross, 2013), which is illustrated in
Figure 6. In that, raw data (source data) module is originally
stored in various storage systems (e.g., SQL, sheets, flat files,
...). The raw data often requires cleansing, correcting noise
and outliers, dealing with missing values. Then it needs to
be integrated and consolidated before loading it into a DW
storage through ETL module.

The integrated information module is a logically
centralised repository, which includes the DW storage, data
marts, data cubes and OLAP engine. The DW storage is
organised, stored and accessed using a suitable schema defined
by the metadata. It can be either directly accessed or used
to create data marts, which is usually oriented to a particular
business function or an enterprise department. A data mart
partially replicates DW storage’s contents and is a subset of
DW storage. Besides, the data is extracted in a form of data
cube before it is analysed in the data mining module. A data
cube is a data structure that allows advanced analysis of data
according to multiple dimensions that define a given problem.
The data cubes are manipulated by the OLAP engine. The DW
storage, data mart and data cube are considered as metadata,
which can be applied to the data used to define other data.
Finally, Data Mining module contains a set of techniques,
such as machine learning, heuristic, and statistical methods
for data analysis and knowledge extraction at multiple level
of abstraction.

5 ETL and OLAP

The ETL module contains extraction, transformation, and
loading tools that can merge heterogeneous schemata, extract,
cleanse, validate, filter, transform and prepare the data to be
loaded into a DW. The extraction operation allows to read,
retrieve raw data from multiple and different types of data
sources systems and store it in a temporary staging. During this
operation, the data goes through multiple checks – detect and
correct corrupted and/or inaccurate records, such as duplicate
data, missing data, inconsistent values and wrong values. The
transformation operation structures, converts or enriches the
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Table 1 Descriptions of other dimension tables

No. Dim. tables Particular attributes
1 Business BusinessID, Name, Address, Phone, Mobile, Email
2 CropState CropStateID, CropID, StageScale, Height, MajorStage, MinStage, MaxStage, Diameter, MinHeight,

MaxHeight, CropCoveragePercent
3 Farmer FarmerID, Name, Address, Phone, Mobile, Email
4 Fertiliser FertiliserID, Name, Unit, Status, Description, GroupName
5 Inspection InspectionID, CropID, Description, ProblemType, Severity, ProblemNotes, AreaValue, AreaUnit, Order,

Date, Notes, GrowthStage
6 Nutrient NutrientID, NutrientName, Date, Quantity
7 Operation time OperationTimeID, StartDate, EndDate, Season
8 Plan PlanID, PName, RegisNo, ProductName, ProductRate, Date, WaterVolume
9 Product ProductID, ProductName, GroupName
10 Site SiteID, FarmerID, SiteName, Reference, Country, Address, GPS, CreatedBy
11 Spray SprayID, SprayProductName, ProductRate, Area,Date, WaterVol, ConfDuration,

ConfWindSPeed, ConfDirection, ConfHumidity, ConfTemp, ActivityType
12 Supplier SupplierID, Name, ContactName, Address, Phone, Mobile, Email
13 Task TaskID, Desc, Status, TaskDate, TaskInterval, CompDate, AppCode
14 Trans time TransTimeID, OrderDate, DeliverDate, ReceivedDate, Season
15 Treatment TreatmentID, TreatmentName, FormType, LotCode, Rate, ApplCode, LevlNo, Type, Description, ApplDesc,

TreatmentComment
16 Weather reading WeatherReadingID, WeatherStationID, ReadingDate, ReadingTime, AirTemperature, Rainfall, SPLite,

RelativeHumidity, WindSpeed, WindDirection, SoilTemperature, LeafWetness
17 Weather station WeatherStationID, StationName, Latitude, Longitude, Region

Figure 6 Agricultural data warehouse architecture (see online version for colours)

extracted data and presents it in a specific DW format. The
loading operation writes the transformed data into the DW
storage. The ETL implementation is complex, and consuming
significant amount of time and resources. Most DW projects
usually use existing ETL tools, which are classified into two
groups. The first is a commercial and well-known group
and includes tools such as Oracle Data Integrator, SAP Data
Integrator and IBM InfoSphere DataStage. The second group
is famous for it open source tools, such as Talend, Pentaho and
Apatar.

OLAP is a category of software technology that provides
the insight and understanding of data in multiple dimensions
through fast, consistent, interactive access, management and
analysis of the data. By using roll-up (consolidation), drill-
down, slice-dice and pivot (rotation) operations, OLAP
performs multidimensional analysis in a wide variety
of possible views of information that provides complex
calculations, trend analysis and sophisticated data modelling
quickly. The OLAP systems are divided into three categories:

• Relational OLAP (ROLAP), which uses relational or
extended-relational database management system to
store and manage the data warehouse;

• Multidimensional OLAP (MOLAP), which uses
array-based multidimensional storage engines for
multidimensional views of data, rather than in a
relational database. It often requires pre-processing to
create data cubes.

• Hybrid OLAP (HOLAP), which is a combination of
both ROLAP and MOLAP. It uses both relational and
multidimensional techniques to inherit the higher
scalability of ROLAP and the faster computation of
MOLAP.

In the context of agricultural Big Data, HOLAP is more
suitable than both ROLAP and MOLAP because:

• ROLAP has quite slow performance and does not meet
all the users’ needs, especially when performing
complex calculations;

• MOLAP is not capable of handling detailed data and
requires all calculations to be performed during the data
cube construction;

• HOLAP inherits advantages of both ROLAP and
MOLAP, which allow the user to store large data
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volumes of detailed information and perform complex
calculations within reasonable response time.

6 Quality criteria

The accuracy of data mining and analysis techniques depends
on the quality of the DW. As mentioned in Adelman and Moss
(2000) and Kimball and Ross (2013), to build an efficient
ADW, the quality of the DW should meet the following
important criteria:

• Making information easily accessible.

• Presenting consistent information.

• Integrating data correctly and completely.

• Adapting to change.

• Presenting and providing right information at the right
time.

• Being a secure bastion that protects the information
assets.

• Serving as the authoritative and trustworthy foundation
for improved decision making. The analytics tools need
to provide right information at the right time.

• Achieving benefits, both tangible and intangible.

• Being accepted by DW users.

The above criteria must be formulated in a form of
measurements. For example, with the 8th criterion, it needs to
determine quality indicators about benefits, such as improved
fertiliser management, cost containment, risk reduction, better
or faster decision, and efficient information transaction. In the
last criterion, a user satisfaction survey should be used to find
out how a given DW satisfies its user’s expectations.

7 ADW implementation

Currently, there are many popular large-scale database types
that can implement DWs. Redshift (Amazon document, 2018),
Mesa (Gupta et al., 2016), Cassandra (Hewitt and Carpenter,
2016; Neeraj, 2015), MongoDB (Chodorow, 2013; Hows
et al., 2015) and Hive (Du, 2018; Lam et al., 2016). In Ngo
et al. (2019), the authors analysed the most popular no-sql
databases, which fulfil most of the aforementioned criteria.
The advantages, disadvantages, as well as similarities and
differences between Cassandra, MongoDB and Hive were
investigated carefully in the context of ADW. It was reported
that Hive is a better choice as it can be paired with MongoDB
to implement the proposed ADW for the following reasons:

• Hive is based on Hadoop which is the most powerful
cloud computing platform for Big Data. Besides, HQL
is similar to SQL which is popular for the majority of
users. Hive supports well high storage capacity,
business intelligent and data science more than

MongoDB or Cassandra. These Hive features are useful
to implement ADW.

• Hive does not have real-time performance so it needs to
be combined with MongoDB or Cassandra to improve
its performance.

• MongoDB is more suitable than Cassandra to
complement Hive because:

• MongoDB supports joint operation, full text
search, ad-hoc query and second index which are
helpful to interact with the users. Cassandra does
not support these features.

• MongoDB has the same master – slave structure
with Hive that is easy to combine. While the
structure of Cassandra is peer - to - peer.

• Hive and MongoDB are more reliable and
consistent. So the combination of both Hive and
MongoDB adheres to the CAP theorem.

The ADW implementation is illustrated in Figure 7 which
contains three modules, namely Integrated Information,
Products and Raw Data. The Integrated Information module
includes two components; MongoDB and Hive. MongoDB
receives real-time data; as user data, logs, sensor data or
queries from Products module, such as web application, web
portal or mobile app. Besides, some results which need to be
obtained in real-time will be transferred from the MongoDB to
Products. Hive stores the online data and sends the processed
data to MongoDB. Some kinds of queries having complex
calculations will be sent directly to Hive.

Figure 7 Agricultural data warehouse implementation (see online
version for colours)

In the Raw Data module, almost data in Operational Databases
or External Data components, is loaded into Cassandra. It
means that we use Cassandra to represent raw data storage.
Hence, with the diverse formats of raw data; image, video,
natural language and sql data, Cassandra is better to store
them than SQL databases. In the idle times of the system,
the updated raw data in Cassandra will be imported into Hive
through the ELT tool. This improves the performance of ETL
and helps us deploy ADW on cloud or distributed systems.



24 V.M. Ngo et al.

8 Performance analysis

The performance analysis was conducted using MySQL
5.7.22, JDK 1.8.0_171, Hadoop 2.6.5 and Hive 2.3.3 which
run on Bash, on Ubuntu 16.04.2, and on Windows 10. All
experiments were run on a desktop with an Intel Core i7
CPU (2.40 GHz) and 16 GB memory. We only evaluate
the performance of reading operation as ADW is used
for reporting and data analysis. The database of ADW
is duplicated into MySQL to compare performance. By
combining popular HQL/SQL commands, namely Where,
Group by, Having, Left (right) Join, Union and Order by, we
created 10 groups for testing. Every group has five queries  and
uses one, two or more commands (see Table 2). Moreover,
every query uses operators; And, Or, ≥, Like, Max, Sum and
Count, to express complex queries.

Table 2 Command combinations of queries

Group Commands
G1 Where
G2 Where, Group by
G3 Where, Left (right) Join
G4 Where, Union
G5 Where, Order by
G6 Where, Left (right) Join, Order by
G7 Where, Group by, Having
G8 Where, Group by, Having, Order by
G9 Where, Group by, Having, Left (right) Join,

Order by
G10 Where, Group by, Having, Union, Order by

All queries were executed three times and we took the
average value of the their execution times. The difference
in runtime between MySQL and ADW for a query qi
is calculated as Timesqi = RTmysql

qi /RTADW
qi . Where,

RTmysql
qi and RTADW

qi are average runtimes of query qi
on MySQL and ADW, respectively. Moreover, with each
group Gi, the difference in runtime between MySQL and
ADW is TimesGi = RTmysql

Gi
/RTADW

Gi
. Where, RTGi =

Average(RTqi) is average runtime of group Gi on MySQL
or ADW.

Figure 8 describes the time difference between MySQL
and ADW for every query. Although running on one computer,
but with large data volume, ADW is faster than MySQL on
46 out of 50 queries. MySQL is faster for three queries 12th,
13th and 18th belonging to groups 3rd and 4th. The two
systems returned the same time for query 24th from group 5th.
Within each query group, for fair performance comparison, the
queries combine randomly fact tables and dimensional tables.
This makes complex queries taking more time and the time
difference is significant. When varying the sizes and structures
of the tables, the difference is very significant; see Figure 8.

Beside comparing runtime in every query, we also compare
runtime of every group presented in Figure 9. Comparing to
MySQL, ADW is more than at most (6.24 times) at group 1st
which uses only Where command, and at least (1.22 times) at
group 3rd which uses Where and Joint commands.

Figure 8 Different times between MySQL and ADW in runtime
of every query (see online version for colours)
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Figure 9 Different times between MySQL and ADW in runtime
of every group (see online version for colours)
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Figure 10 Average runtimes of MySQL and ADW in every groups
(see online version for colours)
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Figure 10 presents the average runtime of the 10 query groups
on MySQL and ADW. Mean, the run time of a reading query
on MySQL and ADW, is 687.8 seconds and 216.1 seconds,
respectively. It means that ADW is faster 3.19 times. In the
future, by deploying ADW solution on cloud or distributed
systems, we believe that the performance will be even much
better than MySQL.
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9 Application for decision making

To  study proposed ADW and its  performance  on real
agricultural data, we illustrated some queries examples
to show how to extract information from ADW. These
queries incorporate inputs on crop, yield, pest, soil, fertiliser,
inspection, farmer, businessman and operation time to reduce
labour and fertiliser inputs, farmer services, disease treatment
and also increase yields. This query information could not
be extracted if the Origin’s separate 29 datasets have not been
integrated  into  ADW.  The data integration  through ADW
actually improves the value  of  crop management data over
time for better  decision-making.

Example 1: List fields, crops in the fields, yield and pest in
the field with conditions: (1) the fields do not used ‘urea’
fertiliser; (2) the crops has ‘yellow rust’ or ‘brown rust’
diseases; (3) the crops were grown in 2015.

select CR.CropName, FI.FieldName, FF.Yield,

PE.CommonName, FF.PestNumber, PE.Description

from FieldFact FF, Crop CR, Field FI, Pest PE,

Fertiliser FE, Inspection INS, OperationTime OP

where FF.CropID = CR.CropID and

FF.FieldID = FI.FieldID and

FF.PestID = PE.PestID and

FF.FertiliserID = FE.FertiliserID and

CR.CropID = INS.CropID and

FF.OperationTimeID = OP.OperationTimeID and

FE.FertiliserName <> ’urea’ and

(INS.Description = ’Yellow Rust’ or

INS.Description = ’Brown Rust’) and

Year(INS.Date) = ’2015’ and

Year(OP.StartDate) = ’2015’ and

Year(OP.EndDate) = ’2015’

Example 2: List farmers and their crop quantities were sold
by Ori Agro company in 08/2016.

select FA.FarmerID, FA.FarmerName, CR.CropName,

SF.Unit, SUM(SF.Quantity)

from Salefact SF, business BU, farmer FA, crop CR

where SF.BusinessID = BU.BusinessID and

SF.FarmerID = FA.FarmerID and

SF.CropID = CR.CropID and

Month(SF.SaleDate) = ’08’ and

Year(SF.SaleDate) = ’2016’ and

BU.BusinessName = ’Ori Agro’

group by CR.CropName

Example 3: List Crops and their fertiliser and treatment
information. In that, crops were cultivated and harvested in
2017, Yield > 10 tons/ha and attached by ‘black twitch’ pest.
Besides, the soil in field has PH > 6 and Silt <= 50 mg/l.

Select CR.CropName, FE.FertiliserName,

FF.FertiliserQuantity, TR.TreatmentName,

TR.Rate, TR.TreatmentComment

From FieldFact FF, Crop CR, OperationTime OT,

Soil SO, PEST PE, Fertiliser FE, Treatment TR

Where FF.CropID = CR.CropID and

FF.OperationTimeID = OT.OperationTimeID and

FF.SoildID = SO.SoilID and

FF.PestID = PE.PestID and

FF.FertiliserID = FE.FertiliserID and

FF.TreatmentID = TR.TreatmentID and

Year(OT.StartDate) = ’2017’ and

Year(OT.EndDate) = ’2017’ and

FF.Yield > 10 and

SO.PH > 6 and SO.Silt <= 50 and

PE.CommonName = ’Black twitch’

Example 4: List crops, fertilisers, corresponding fertiliser
quantities in spring, 2017 in every field and site of 10 farmers
(crop companies) who used the large amount of P2O5 in
winter, 2016.

To execute this request, the query needs to exploit data in
the FieldFact fact table and the six dimension tables, namely
Crop, Field, Site, Farmer, Fertiliser and OperationTime. The
query consists of two subqueries which return 10 farmers (crop
companies) that used the largest amount of Urea in spring,
2016.

Select FI.FieldName, SI.SiteName, FA.FarmerName,

CR.CropName, FE.FertiliserName,

FF.FertiliserQuantity, FE.Unit, OT.StartDate

From FieldFact FF, Crop CR, Field FI, Site SI,

Farmer FA, Fertiliser FE, Operationtime OT

Where FF.CropID = CR.CropID and

FF.FieldID = FI.FieldID and

FF.FertiliserID = FE.FertiliserID and

FF.OperationTimeID = OT.OperationTimeID and

FI.SiteID = SI.SiteID and

SI.FarmerID = FA.FarmerID and

OT.Season = ’Spring’ and

YEAR(OT.StartDate) = ’2017’ and

FA.FarmerID IN(

Select FarmerID

From

(Select SI.FarmerID as FarmerID,

SUM(FF.FertiliserQuantity) as SumFertiliser

From FieldFact FF, Field FI, Site SI,

Fertiliser FE, OperationTime OT

Where FF.FieldID = FI.FieldID and

FF.FertiliserID = FE.FertiliserID and

FF.OperationTimeID =

OT.OperationTimeID and

SI.SiteID = FI.SiteID and

FE.FertiliserName = ’SO3’ and

OT.Season = ’Spring’ and

YEAR(OT.StartDate) = ’2016’

Group by SI.FarmerID

Order by SumFertiliser DESC

Limit 10

)AS Table1

)
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10 Conclusion and future work

In  this  paper,  we   presented   a    schema optimised  for
the real agricultural datasets that were made available to
us. The schema  was designed as a constellation so it is
flexible to adapt to other agricultural datasets and quality
criteria of agricultural Big Data. Based on some existing
popular open source DWs,     we designed and implemented
the agricultural DW by combining Hive, MongoDB and
Cassandra DWs to exploit their advantages and overcome their
limitations. ADW includes necessary modules to deal with
large scale and efficient analytics for agricultural Big Data.
Moreover, through particular reading queries using popular
HQL/SQL commands, ADW storage outperforms MySQL
by far. Finally, we outlined some complex HQL queries that
enabled knowledge extraction from ADW to optimise the
agricultural operations.

In the future work, we shall pursue the deployment of
ADW on a cloud system and implement more functionalities
to exploit this DW. The future developments will include:

• experimentation and analysis of the performance of
MongoDB and the affectation between MongoDB and
Hive

• sophisticated data mining techniques (Cai et al., 2012)
to determine crop data characteristics and combined with
expected outputs to extract useful knowledge

• predictive models based on machine learning algorithms

• an intelligent interface for data access

• combination with the high-performance knowledge
map framework (Le-Khac et al., 2007).
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Appendix

The followings are HQL/SQL scripts of 10 queries which are
representative of 10 query groups. The average runtimes of
these queries on MySQL and ADW are shown in Figure A1.

A1 Average runtimes of MySQL and ADW in 10 typical queries
(see online version for colours)
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1) The query 5th belongs to the group 1st:

SELECT fieldfact.FieldID, crop.cropname,

fieldfact.yield

FROM fieldfact, crop

WHERE fieldfact.cropid = crop.cropid and

SprayQuantity = 7 and

(crop.CropName like ’P\%’ or

crop.CropName like ’R\%’ or

crop.CropName like ’G\%’);

2) The query 10th belongs to the group 2nd:
SELECT soil.PH, count(*)

FROM fieldfact, soil

WHERE fieldfact.SoildID = soil.SoilID and

fieldfact.sprayquantity = 2

GROUP by soil.PH;

3) The query 15th belongs to the group 3rd:
SELECT fieldfact.yield,

fertiliser.fertiliserName,

fertiliser.fertiliserGroupName

FROM fieldfact

RIGHT JOIN fertiliser on

fieldfact.fertiliserID = fertiliser.fertiliserID

WHERE fieldfact.fertiliserQuantity = 10 and

fertiliser.fertiliserName like ’%slurry%’;

4) The query 20th belongs to the group 4th:
SELECT sprayproductname

FROM fieldfact, spray

WHERE fieldfact.sprayid = spray.sprayid and

fieldfact.watervolumn > 5 and

fieldfact.watervolumn < 20

UNION

SELECT productname

FROM product, orderfact

WHERE product.ProductID = orderfact.ProductID

and (orderfact.Quantity = 5 or

orderfact.Quantity = 6);

5) The query 25th belongs to the group 5th:
SELECT fieldfact.fieldID, field.FieldName,

field.FieldGPS, spray.SprayProductName

FROM fieldfact, field, spray

WHERE fieldfact.FieldID = field.FieldID and

fieldfact.SprayID = spray.SprayID and

fieldfact.PestNumber = 6

ORDER BY field.FieldName;

6) The query 30th belongs to the group 6th:
SELECT fieldfact.FieldID, nutrient.NutrientName,

nutrient.Quantity, nutrient.‘Year‘

FROM fieldfact

RIGHT JOIN nutrient on

fieldfact.NutrientID = nutrient.NutrientID

WHERE fieldfact.NutrientQuantity = 3 and

fieldfact.fertiliserquantity = 3

ORDER BY nutrient.NutrientName

LIMIT 10000;

7) The query 35th belongs to the group 7th:
SELECT crop.cropname,

sum(fieldfact.watervolumn) as sum1

FROM fieldfact, crop

WHERE fieldfact.cropid = crop.cropid and

fieldfact.sprayquantity = 8 and

crop.EstYield >= 1 and crop.EstYield <=10

GROUP BY crop.cropname

HAVING sum1 > 100;

8) The query 40th belongs to the group 8th:
SELECT crop.cropname,

sum(fieldfact.fertiliserquantity) as sum1

FROM fieldfact, crop

WHERE fieldfact.cropid = crop.cropid and

fieldfact.nutrientquantity= 5 and

crop.EstYield <=1

GROUP by crop.cropname

HAVING sum1 > 30

ORDER BY crop.cropname;

9) The query 45th belongs to the group 9th:
SELECT nutrient.NutrientName,

sum(nutrient.Quantity) as sum1

FROM fieldfact

LEFT JOIN nutrient on

fieldfact.NutrientID = nutrient.NutrientID

WHERE nutrient.nutrientName like ’%tr%’ and

(fieldfact.pestnumber = 16 or

fieldfact.pestnumber = 15)

GROUP by nutrient.NutrientName

HAVING sum1 <300

ORDER BY nutrient.NutrientName;

10) The query 50th belongs to the group 10th:
SELECT sprayproductname as name1,

sum(fieldfact.watervolumn) as sum1

FROM fieldfact, spray

WHERE fieldfact.sprayid = spray.sprayid and

fieldfact.Yield > 4 and fieldfact.Yield < 8

GROUP by sprayproductname

HAVING sum1 > 210

UNION

SELECT productname as name1,

sum(orderfact.Quantity) as sum2

FROM product, orderfact

WHERE product.ProductID = orderfact.ProductID and

(orderfact.Quantity = 5 or

orderfact.Quantity = 6)

GROUP by productname

HAVING sum2 > 50

ORDER BY name1;




