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Abstract: This paper proposes a new sliding mode augmented U-model-based 
control method (USM-control) for controlling a class of Single-Input Single-
Output (SISO) dynamic systems with internal uncertain parameters and 
external system noise/disturbance. To implement this idea, this study firstly 
introduces the U-model definition, establishes the corresponding USM-control-
based system design framework, and explains its design procedure step by step. 
Then this study selects a simplified nonlinear helicopter model for simulation 
case studies, using Matlab/Simulink to test and demonstrate the proposed  
USM-control method in terms of tracking ability, and finally discusses the 
comparison results generated from USM-control and U-control approaches to 
test the stability and robustness of proposed control method in this study. 
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1 Introduction 

Plant modelling has played a very critical role in model-based control system design.  
In general, there are two main important considerations for model utility and control 
systems, 1) approximation capabilities in terms of accuracy and conciseness; 2) control 
oriented structure for control system formation and calculation.  

Regarding the first concern, in practice, even for academic research, seldom does a 
model have accurate representation to real plants, therefore model-based control system 
design should take internal uncertainty and external disturbance like system error into 
consideration (Oberkampf et al., 2004). Sliding Mode Control (SMC) (Edwards and 
Spurgeon, 1998) has been effectively used to deal with uncertainties in way of variable 
structure system, that is, a control system involving discontinuous control actions. 
Sliding mode control has developed in various sliding manifolds such as integral sliding 
mode control approach (Wang et al., 2017), second-order sliding mode control approach 
(Ding et al., 2017), super-twist sliding mode control approach (Chalanga et al., 2016), 
and adaptive sliding mode control approach (Li et al., 2016). SMC method is a special 
kind of non-linear control with the characteristics of control discontinuity, even though 
the switching characteristics of the control system structure change with time. In 
summary, the advantages of SMC method are that firstly the dynamic behaviour of the 
system may be tailored by the particular choice of the switching function (Edwards and 
Spurgeon, 1998) and secondly even if the system has external disturbances and uncertain 
parameters, the sliding mode control method can still keep system stability and have 
strong robustness. 

For the second concern, the key idea used in this study is U-model-based control 
method, U-control method in short. U-model represents a class of smooth systems which 
use time-varying parameters and functions to absorb all other items except system input u 
and its relative high order derivative terms. Generally, this unnoticed and new U-model 
can be converted and expressed into single-layer and multi-layer, that is, polynomial 
model and state space model from linear and non-linear systems. Zhu et al. (1991) firstly 
proposed the basic designing procedure for controller in U-model, that is, obtaining 
controller output u from solving the root of the controller output function by using 
Newton-Raphson algorithm. Zhu and Guo (2020) generally indicated the polynomial 
definition of U-model and introduced U-control system framework and design procedure 
by pole placement method, which also provides general converting procedure from 
normal smooth linear/nonlinear systems into U-model-based expression. Then, U-model 
expands the Non-linear Autoregressive Moving Average model with Exogenous inputs 
(NARMAX) function as power series in the current control term, thus allowing simple 
polynomial root solving procedures to be used for controller synthesis. Generally,  
U-control approach can save the computation of control system design procedure from 
avoiding nonlinear system modelling linearisation processing. However, U-model-based 
dynamic inversion is very sensitive to internal uncertainties as well as the controlled 
performance. In this case, reducing U-control method’s sensitivity to uncertainty, that is, 
improving its robustness is a hot research issue. 
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In the past 20 years, Discrete Time (DT) U-model and U-control systems have been 
well studied due to the easy implementation of model inversion. Representatively, these 
approaches include U-model-based pole placement control system design method  
(Zhu, 1989; Zhu et al., 2015), U-Smith predictor design for system with input time delay 
(Geng et al., 2019), adaptive U-model-based control method for controlling total non-
linear dynamic systems (Zhu et al., 2018), U-model-based neural network enhanced 
control method (Zhu et al., 2019a), adaptive U-model-based control method for 
controlling underactuated coupled nonlinear multivariable unmanned marine robotics 
(Hussain et al., 2020). However, the majority of U-control approaches have assumed an 
accurate plant model and perfectly matched system available. Therefore, U-model-based 
robustness control method is quite necessary and challenging in development. 
Meanwhile, Continuous Time (CT) U-control system design is less attended (Zhu et al., 
2019b). This is because it is difficult in the solution of CT dynamic inversion with high 
order derivative terms of controlled system input and output. Consequently, this study 
takes these two challenges to try a solution for CT U-model-based robust control system 
design, that is, in the form of combined U-control method’s computation saving capacity 
and SMC method’s strong robustness. 

Accordingly, the main contribution of this study is justified with 

1) Proposal of a new USM-control framework integrating U-control and SMC method, 
which accommodates both control-oriented model structure and strong robustness 
against imperfect model representation. 

2) Computational experiments by Simulink to bench test the developed control system 
design procedure. In addition, the exemplary case study provides potential 
readers/users a routine for their ad hoc research expansion and applications. 

The rest of the study is organised as follows: Section 2 firstly introduces the U-model 
realisation of general classical polynomial and state space models, then shows U-control 
system design framework under perfectly matched and mismatched situations. Section 3 
presents SMU -control system design framework and its relative control system design 

procedures. Based on Section 3, Section 4 introduces the compensated plant inverter and 
dynamic inverter design procedure in SMU -control system step by step. Then, based on 

the theory provided in Sections 3 and 4, Section 5 selects a case study of pitch angle 
control with a helicopter, provides computational experiments to demonstrate the 
theoretical results numerically, and compares the simulated results of from U-control 
method and SMU -control method. Section 6 draws the conclusion and future work of this 

study. 

2 U-model and U-control 

2.1 U-polynomial (Zhu et al., 2019b) 

For a SISO U-polynomial model, pU  in short with a triplet of  , , py u U  , 
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where 
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 is the M-th order derivatives of the plant output y and 
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u
 is the N-th 
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  and coefficients .  

Remark 1: U-polynomial is an alternative expression of classical polynomials, with time-
varying parameters and control-oriented structure. 

Consider a classical NARMAX polynomial model as an example to show its  
U-realisation procedure: 

  2 31 3y y u u y uy          (2) 

where its relative U-model-based expression is:  
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  (3) 

Inspection of (2) and (3) shows that the U-polynomial is a direct realisation of classical 
polynomials. It should be explained that the U-polynomial is the same as its classical 
polynomials in the model properties, but a general concise structure for control system 
design, particularly non-linear systems (Zhu et al., 2015). 

Remark 2: For converting classical polynomial into U-polynomial, an absorbing rule 
(Zhu et al., 2019b) is generally applied, that is, to absorb all associated with each input 
u  function into a time variant coefficient j . 

Remark 3: It is clear for degree 1J   in U-polynomial model (1), it is simplified into a 
linear in the input U polynomial expression 

   
0 1 , 

M N
M N

y u
 

 
   

 
 (4) 

2.2 U-Rational model – expanded U-polynomial (Li et al., 2020) 

U-Rational model, UR in short, can be defined as the ratio of two U-polynomial models, 
which can be expressed as:  



   

 

   

   
 

   

   

 

   

   72 Z. Wei, R. Li and Q. Zhu    
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

 

, ,0

, ,0

  

  : ,

 

n

n j n jj
pn

R
dpd

d j d jj

N
f

U uM
U M N

Uy N
f

u









 
 
   
 
 
 




 (5) 

where njf  is a smooth function absorbing the controller output vector 
 N

u
 in numerator 

and djf  can absorb it in denominator. nj  and dj  can absorb all the other terms except 

controller output vector 
 N

u
 in numerator and denominator respectively. Consider a 

simple example to show the converting procedure from a classical rational model to  
U-model: 
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1 0.5
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   (6) 

Accordingly, its expanded U-polynomial is 
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where 

2
0 1 2 1 , 1, 0.5n n ny       

 0 1cos , 1y
d de y y      

And  

     3
1 2 1, ,n n df u u f u u f u u    (8) 

2.3 U-State space model (Li et al., 2020) 

U-state space model, SSU  in short is defined as below, 
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where **   is U-model time-varying parameters which can absorb all the other items 

except controller output vector u  and **f  is a smooth U-basis function. 

Remark 4: U-state space model is a multi-layer U-polynormal since each line of SSU  is  

a PU . 

Consider a simple non-linear state space model: 

1 1 1 2

2 1

1

x x x x

x x u

y x

 
   
 


  (10) 

Based on absorbing rule in equation (9), convert system (10) into U-state space model: 

 
 
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2 20 21 21

1

x f x
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 

 
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where 

10 1 11 1 20 1 21, , , 1x x x         

   11 2 2 21, f x x f u u   (12) 

2.4 U-control framework (Li et al., 2020) 

Assume the plant model PG  is stable, bounded, and inversion exist. From Figure 1, there 

are two parts building the U-controller in the dashed line block area, these are, the 
invariant controller 1cG  and U-dynamic inverter 1

PG . Therefore, the expression of this 

U-control system is: 

  1
1,c P pU G G G   (13) 

Figure 1 U-control system design framework 

 

U-control system requires design U-inverter 1
PG  to make plant output y  equal to the 

invariant controller output v , that is, v y , which means reaching 1 1P PG G   under the 

perfect dynamic inversion. Therefore, U-control system performance depends on the 
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accuracy of the plant dynamic inversion 1
pG  , therefore, U-control is ineffective for 

controlling plants with inaccurate models or systems with disturbance. 
Based on the U-control system expression in (13), if the plant is MG  in practice, then 

U-control system is as shown in Figure 2. 

Figure 2 U-control system framework with inaccurate plant 

 

Let M

p

G
k

G
 , then the system input-output relationship is:    

1
c

c

G k
Y s U s

G k



. In this 

case, system output  Y s  will be impacted directly by the plant inaccuracy rate k . Then, 

consider an accurate system and disturbance  d s  has been introduced in the system. 

The U-control system is as shown in Figure 3. 

Figure 3 U-control system with uncertain plant and control disturbance 

 

Accordingly, the system input-output relationship is:      
1 1

pc

c c

G kG k
Y s U s d s

G k G k
 

 
, 

that is, the system output will be influenced by the system disturbance. In this case, 
system disturbance will be suppressed by the closed loop system, especially when cG  is 

large. However, if the system has high frequency disturbance, this will not only affect the 
performance of the control system, but may also cause damage to the control system due 
to resonance. In summary, controlled plant inaccuracy and system disturbance will bring 
great challenges and difficulties to U-control system design. 

3 USM-control framework and design procedure 

In Section 2, since these two main problems (plant inaccuracy and system disturbance) 
greatly degrade U-control performance, this study proposes a new SMU -control method 

which combines U-control and SMC to enhance the robustness of U-control. The  
USM-control system framework is shown in Figure 4. 
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Figure 4 USM-control system framework 

 

where MG  is the controlled plant model in practice which may contain uncertain system 
coefficients, r  is the desired output, which is also called reference in control system,  y  

is the system output and e  is the difference between y  and r  in this closed-loop control 

system. 1cG  is U-model-based linear invariant controller, which can be designed by users 

for different control performance. 1
eG (SMC) model is the core part in the SMU -control 

system, which can compensate the inversion error of the plant model MG . Similar to  

U-control, SMU -control framework requests dynamic inverse 1
PG  exist. In general, the 

SMU -control system design procedure has three separate steps: 

1) Design ideal plant inverter 1
PG : Based on U-control system design framework in 

Sub-section 2.4, replace ideal plant model PG  in the U-control system with the 

actual plant model .MG  Accordingly, system (13) can be converted into: 

  1
1, ,c P MU G G G   (14) 

2) Design compensated plant inverter 1
eG : From Sub-section 2.4, it is clear that system 

(14) will be influenced by system mismatch. Assume the practice plant model MG  is 

bounded, and its ideal inverse 1
PG  exists. From Figure 3, the SMU -controller in the 

dashed line block has three parts: the invariant controller 1cG , the ideal plant’s 

dynamic inverter 1
PG  and the compensated plant inversion 1

eG . To facilitate the 

design of 1
eG , system (14) can be converted into: 

   1 1
1, , ,c P e MU G G G G   (15) 

where   1 1
1, ,c P eG G G   is defined as SMU -controller. Same as the operating principle in 

the U-control system, SMU -inverter  1 1
P eG G   is designed to force and ensure the plant 

output y  equals to the invariant controller output v . 

3) Design U-control invariant controller 1cG : By assuming  1 1  1P e MG G G   ,  

Figure 4 is therefore simplified to Figure 5 and gives: 

 1,1cG   (16) 
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Equation (16) shows a typical classical linear control system. Assume the gain of the 
closed-loop control system is G  and therefore from equation (16), G  can be expressed 

as 1

11
c

c

G
G

G



. Generally, G  can be specified and designed with different requirements 

by users, typically different damping ratio and natural frequency n  can reach different 

control performance. In this case, the invariant controller 1cG  in U-control system can be 

calculated based on different system closed-loop gain by: 1 1c

G
G

G



.  

Figure 5 Simplified SMU -control system 

 

4 Design of plant dynamic inverter 1
pG  and compensated  

plant inverter 1
eG  

From the SMU -control system design framework, SMU -controller contains two parts: 

ideal plant inverter 1
pG  and compensated plant inverter 1

eG  and this study defines their 

output as iu  and eu , respectively. 

Consider a general underactuated SISO CT state space model: 

 
 

,X F X u

y H X
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




  (17) 

where ,u y  are plant input and output, respectively, nX   represents all state 

variables. F   introduces the relationship between state variables and plant 
input,  H   is a smooth mapping to drive all state variables to the plant output. Expand 
this multi-layer model (17) into a multi-layer polynormal expression as follows: 
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In system (18), * nF   is a smooth function absorbing all state variables ix , g  is a 

function to represent the relationship between state variables and controller output u , d  
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is the system interference/error and d d . For the next work in this study, assuming 

that there is no unstable zero dynamics in controlled system and all the state variables ix  

can be observed. 

4.1 Design of ideal plant inverter 1
pG  

Ignore control interference d  and convert state space model (18) into a multi-layer  
U-model expression (12) as follows: 
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  (19) 

Differentiate y  in (19) and gives: 

 1 1, 1,
1

n

i i i
i

y x f x


      (20) 

If equation (20) cannot show the direct relationship between y  and u , then differentiate 

y  and replace ix  items in system (20) with the polynomial expression for each ix   

in (19). Repeat this procedure to find the direct relationship between 
 m

y
 and u , where 

 m

y
 is the m  times derivative of system output y . After organisation, it gives: 

     1 1 2 1 2 1 2 1, , , , , , , ,n n n n i

m
x x x x x x x x u

y
        (21) 

where i  is a time-varying parameter vector function absorbing all state variables.  

It is clear that equation (21) is a simplified form of general U-model polynomial 
expression (1). Therefore, the ideal inverter output iu  is: 

   
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Additionally, state variables ix  can be obtained by integrating ix  in the feedback loop 

from the plant, that is, 
1

i ix x
s

   , where without confusion, 
1

s
 is the integral operation of 

Laplace transform. 

4.2 Design of compensated plant inverter 1
eG  

This study introduces Sliding Mode Control (SMC) into U-control to strengthen 
robustness, in way of adding compensated plant inverter 1

eG  to cope with plant 

uncertainties and system disturbances. For determining 1
eG , define the m-th order of 

state error equations as: 

   

1 1

˙ ˙

2 1 1

˙ ¨ ¨

13 2

1
1

11

d

d

d

m m
d

e x x

e e x x

e e x x

mm
e e

xx

 

  

  













 













 (23) 

where 
 

1

1m

x


 and 

 1

d

m

x


 are the  1m th   order derivatives of the plant output 1x  

and desired output dx . Then, define a sliding surface function   (Shtessel, 2014) by: 

1 1 2 2 1 1m m mc e c e c e e       (24) 

From equation (24), the derivative of the sliding surface function is 

       ˙ ¨ ¨

21 1 2 1
1 1

11
dd n

d d

m mm m
c x x c x x c

x xx x

                    
       
  (25) 

where , ,ic R i R    ic  is the coefficient specifying the bandwidth of the sliding 

surface function (Shtessel, 2014). 
Same as the U-model state space expression, replace the highest order derivative of 

the desired output 
 

d

m

x
 with v , in this case, the other orders derivatives of the desired 

output 
  0

d

i
i m

x
   can be expressed by the  m i  order integration of v , that is, 

  1
m i

d

i
v

x s


   
 

, where 
1

s
 is the Laplace transform of integration. In this case, error 

equations (23) and (25) can be converted into: 
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 

1 1

1
˙ ˙

2 1 1

2
˙ ¨

13 2

1
1

1

1

1

1 1

m

m

m

m m

e x v
s

e e x v
s

e e x v
s

m
e e v

sx







    
 

     
 

     
 

      
 





 (26)  

 

   

¨
1 2

21 1 2
1

1

1 1 1

1 1
( ) ( )

1

m m

m im

i
i

m
c x v c x v

s s x

i m
c v v

sx x

  





             
     

                


 

 (27) 

In the actual calculation process, direct calculation procedure of 
 

1

m

x
 can be converted as 

continuously differentiating the lower order derivatives of 
 

1

i

x
 and replace its first order 

derivates items with corresponding items in equation (26) until i  equals m . The first 

 2m   times differentiating operation does not have nx  items, therefore, the expression 

of a series of derivatives of 1x  are: 

   

 

 

 

1 1 1 2 1 1 1 2 1

¨ ˙
1 1 1

1 1 1 2 1 2 1 2 1
1 2 1

˙
2 2 2

1 2 1 2 1 3 1 2 1
1 2 1

2 2 2
2 1 2 1

1 2 11

, , , , , ,

, , ,

, , ,

1

n n

n n
n

n n
n

m m m
m n m

n

x F x x x x x x

x F F F x x x
x x x

x F F F x x x
x x x

m
F F F

x x xx

 

 


 


  
  



   

  
     

  
  

     
  

   
    

  











  
 

  
 

  
   

   

1 1 2 1

1 1 1 1
1 2 1

1 2 11

, , , ,n n

m m m m
n n s

n n

x x x x

m
F F F F gu d

x x x xx



   

















          
    

   

  (28) 

In this case, equation (27) can be expanded to: 
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   

 

1

1 1 1

1

1

1 1 1 1
1 2 1

1 2 1

1

1

m im

i
i

m im

i i
i

m m m m
n n

n n

i m
c v v

sx x

c v
s

F F F F gu d v
x x x x










   




                
        

    
           









   

  (29) 

Let 0  , to obtain the equivalent controller output and switching controller output 
(under exponential approach law) (Shtessel, 2014) by 

1
1

1 1 1 1
1 2

1 1 2

1
m im

m m m m
eq i i n

in n

u g c v F F F v
x s x x x

 
   



                                 
   

   (30) 

 
1

1 , 0, 0m
sw

n

u g sgn k k
x

   


 
         


 (31) 

From equation (22) and SMU -control system framework (14), except invariable 

controller, SMU -controller should contain two parts: the ideal inverter output iu  and the 

compensated inverter output cu . Therefore, SMU -controller output s eq swu u u   

i cu u  , that is, ( )c eq i swu u u u   . Then, bring SMU -controller output su  into 

equation (29): 

  1 m

n

sgn k d
x

    
  


 

  (32) 

Let , 0d     . The Lyapunov function can be defined as 21
, 

2
V  then: 

   

 

1

2 21 0

m

n

m

n

V d sgn k d
x

d k d k
x

    

      





 
       


        



  


 (33) 

5 Case studies 

In this part, a simplified helicopter pitch dynamics model is selected to test the  

SMU -control method. Firstly, Sub-section 5.1 introduces this physical model for the 

operation and its state space model for control system design. Then, SMU -controller 

which includes invariable controller 1cG , ideal plant inverter 1
PG  and compensated plant 

inverter 1
eG  will be designed step by step from Sub-section 5.2 to Sub-section 5.4. Sub-

section 5.5 demonstrates the consistency of SMU -control method and U-control method 
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under the ideal error-free model. Sub-section 5.6 tests the robustness of proposed SMU -

control method. Sub-section 5.6.1 considers a simplified helicopter pitch dynamics model 
with system internal uncertainty and Sub-section 5.6.2 introduces system noise based on 
the previous uncertain plant. Then, by comparing the simulation results, the robustness of 
USM-control method is verified. Finally, Sub-section 5.7 discusses all simulation results 
and gives a brief conclusion. 

5.1 Simplified helicopter pitch dynamic model 

The schematic diagram of the helicopter (Razavi et al., 2016; Samadi and Rodrigues, 
2009) is shown in Figure 6. The non-linear model of the pitch dynamics of the simplified 
helicopter is described by the following equation: 

¨

yy hel cgx hel cgz vMI m gl cos m gl sin F        (34) 

This simplified helicopter model has two degrees of freedom in vertical direction with 

only one actuator: propeller lifting power. Let 1x  , 2x  , convert non-linear system 

(33) into state space expression: 

    
1 2

2 1 1 2

 

1
hel cgx hel cgz vM

yy

x x

x m l gcos x m l gsin x F x u
I



     




   (35) 

where 1x  is the pitch angle    and 2x  represents the pitch rate  ; yyI  is the second 

moment around the y-axis; helm  is the mass of the helicopter; cgxl  and cgzl  are 

displacements from the centre point of mass (GC in Figure 6) relative to the rotation joint 
B shown in Figure 6; vMF  is the pitch damping; u  is the control torque exerted by the 

main blade of the helicopter around the y-axis;  

5.2 Invariant controller 1cG  design 

In order to ensure the system has no overshoot, therefore, system (34) should be a critical 
damping system which returns the system to equilibrium (desired reference) as fast as 
possible without overshooting. With reference to USM -control system design procedure 

proposed in Section 3, this study chooses system damping ratio 1 and natural frequency 
2n  . Accordingly, the desired closed-loop system gain is assigned with: 

 
    2

4

4 4

Y S
G S

R S s s
 

 
 (36) 

From Sub-section 2.4, the invariant controller 1cG  with a unit constant plant in a 

feedback control system is determined by taking inverse of the closed loop transfer 
function (35) as below: 

1 2

4

1 4c

G
G

G s s
 

 
  (37) 
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Figure 6 Simplified pitch model of the helicopter (Razavi et al., 2016) 

 

5.3 Ideal inverter 1
PG  design  

Sub-section (4.1) introduces ideal plant dynamic inverter 1
PG  design procedure. 

Continue take the derivative to y  and replace  0ix i   with equation in (34). Ignore 

noise item, then it gives: 

    2 1 1 2

1
hel cgx hel cgz vM

yy

y x m l gcos x m l gsin x F x u
I

         (38) 

Therefore, the original system is converted into U-model expression: 

    
0 1

0 1 1 2

1

1
cos sin

1

hel cgx hel cgz vM
yy

yy

y u

m l g x m l g x F x
I

I

 








 
    


 




 (39) 

Then, the inverter 1
PG  output is designed as: 

¨

0

1
i

y
u





   (40) 
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Let y  be replaced with v , then: 

0

1
i

v
u





    (41) 

5.4 Compensated inverter 1
eG  design  

Based on Sub-section (4.2), the error equations are designed as:   

2

1 1

˙

2 1 1

1

1
 

e x v
s

e e x v
s

       
   


  (42) 

The sliding function (Shtessel, 2014) is: 

1 2ce e     (43) 

From equations (42) and (43), we have: 

 

    

˙ ˙

1 2 1 2

2 1 1 2

1
 

1 1
cos sinhel cgx hel cgz vM

yy yy

c e e c x v x v
s

u
c x v m l g x m l g x F x v

s I I

        
 
                

  

  (44) 

Bring U-model expression equation (39) into (44), equation (44) can be converted into: 

 2 0 1

1
c x v u v

s
        

 
   (45) 

2 0

1

1

eq

v c x v
s

u




    
    (46) 

  swu sgn k       (47) 

Based on equation (45), , 0d     . There is no disturbance first, let 0.1   and 

0.1d    . In order to keep the sliding rate (Shtessel, 2014), let 1k  , then the 

output of the compensated inverter 1
eG  is: 

  

  

2 0
0

1 1

2

1

1
10

1
10

s eq sw iu u u u

v x v
vs

sgn

x v
s

sgn




 
 

 


  

         

   
   

 (48) 
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To avoid system chattering, the switching operation should not be hold if the system 
dynamic sliding inside the boundary R  . When the system dynamic is outside the 

boundary  , the switching function is defined by: 

 
    ,    

       ,           
 

sgn

sat

  
   



 
  


   (49) 

For more precise convergence and because this system has no disturbance or uncertainty, 
  should be small. Let 0.05  , then the compensated inverter 1

eG  is shown: 

  
2

1

1
10

s

x v
s

u sat  


   
      (50) 

where 1

1

yyI
  . 

5.5 Perfectly matched plant simulation test 

Based on Razavi et al. (2016), the experiment modelling parameters are shown in  
Table 1. 

Table 1 Pitch model of the helicopter characteristics 

Parameter Value Unit 

yyI  0.0283 2kgm  

helm  0.9941 kg  

cgxl  0.0134 m  

cgzl  0.0289 m  

vMF  0.0041 
Nm

rad
s

 

g  9.81 2

m

s
 

For U-model (39), it is clear that U-model-based time varying parameters are: 

   
0 1

0 1 1 2

1

4.618cos 9.958sin 0.1449

1

0.0283

y u

x x x

 





  
    

 



  (51)  
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The framework of the ideal plant system applied with USM-control method is shown in 
Figure 7. Figure 8 shows the comparison results of ideal simplified helicopter  
model controlled by U-control method and USM-control method. Figure 9 shows the 
compensated inverter output. 

Figure 7 USM-control of helicopter 

 

Figure 8 Comparison of perfectly matched simplified helicopter model. (a) USM-control-based 
plant output and reference (b) U-control-based plant output and reference  
(c) USM-controller output (d) U-controller output 

 
(a) 

 
(b)

 
(c) 

 
(d)  
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Figure 9 USM-control-based compensated inverter output 

 

5.6 Robustness testing and comparison 

5.6.1 Plant with internal uncertainty  

In practical control system operation, a close-loop system output may be not measured 
accurately and is subject to the model imperfectly match. Therefore, to accommodate 
such inaccuracies, system (34) is changed into: 

    
1 2

1 2
2 1 1 2

Φ

1Φ
cos sinhel cgx hel cgz vM

yy

x x

x x
x m l g x m l g x F x u

I




  






 




    (52) 

where Φ  is the system uncertain coefficient which the amplitude changes from 0.5 to 1 
with rate of 1 Hz. Figure 10 shows its variation curve.  

Figure 10 System uncertain coefficient 
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Remark 8: Φ  is randomly changed within its boundary, that is, the uncertain system will 
deviate by up to 50% from the perfectly matched system. To avoid chattering,   should 

be larger than before. Let 0.1  , then the switching function is shown: 

      ,         0.1

      1 0 ,           0.1

sgn
sat

 


 
   

  (53) 

Figure 11 shows the framework of USM-control system for plant with system uncertainty. 
Figure 12 shows the controlled comparison results of the simplified helicopter model 
with internal uncertain parameter by U-control method and USM -control method.  
Figure 13 shows the output of the compensated inverter. 

Figure 11 USM-control of helicopter system uncertainty 

 

Figure 12 Comparison of mismatched simplified helicopter model. (a) USM-control-based plant 
output and reference (b) U-control-based plant output and reference (c) USM-controller 
output (d) U-controller output 

 
(a) 

 
(b)  

 
(c) 

 
(d)  
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Figure 13  USM-control-based compensated inverter output 

 

5.6.2 Uncertain plant with system noise 

Consider a more complex and practical control situation: there are system internal 
uncertainty during the modelling process and system noise at the interface between the 
controller and the controlled platform. Therefore, to accommodate such inaccuracies, 
system (52) is changed into: 

    
1 2

2 1 1 2

Φ

1
hel cgx hel cgz vM

yy

x x

x m l gcos x m l gsin x F x u d
I



      




  (54) 

where d  is system noise/disturbance. Φ  changes the same as it in system (53) from 0.5 
to 1 with 1 Hz variation frequency. d  changes from 0 to 0.3 with 10 Hz. Figure 14 
shows system noise/disturbance variation curve.  

Figure 14 System control noise 
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Remark 9: Φ  and d  are randomly changed within their boundaries. In this system, 
based on the U-controller output of perfectly matched plant which is shown in Figure 
8(d), it is clear that when controller output is small, system noise/disturbance will greatly 
affect system stability and control performance. Same as the boundary coefficient design 
for system (53), to avoid chattering,   should be large enough. Let 0.1  , then the 

switching function is shown: 

      ,         0.1

      1 0 ,           0.1

sgn
sat

 


 
   

  (55) 

Figure 15 shows the design framework of SMU -control system for plant with internal 

uncertain parameter and system noise/disturbance. Figure 16 shows the comparison 
results of this practical simplified helicopter model with uncertainty and system 
noise/disturbance controlled by U-control method and SMU -control method. Figure 17 

shows the compensated inverter output. 

Figure 15 USM-control of helicopter with system uncertainty and noise/disturbance 

 

5.7 Discussions 

For controlling perfectly matched plant, from Figures 8(a) and 8(b), both methods can 
make the controlled system be convergent and track the desired output reference. 
Additionally, from Figures 8(c) and 8(d), these two systems’ controller outputs are also 
the same, that is, the compensated inverter output is none, which can be seen and proved 
by Figure 9. This means that the compensated inverter only works for system inversion 
disturbance. If the controlled plant is accurate and the controlled system has no 
interference, USM-control method will have the same controlled ability and performance 
with the U-control method.  

For controlling mismatched plant, from Figures 12(a) and 12(b), USM -control method 
shows better performance than U-control method in tracking ability. From Figure 8(d) 
and Figure 12(d), U-controller output for perfectly matched plant and mismatched plant 
are almost the same, but the output performance is degraded due to the uncertainty. 
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Figure 16 Comparison of mismatched simplified helicopter model with system noise/disturbance. 
(a) USM-control-based plant output and reference (b) U-control-based plant output and 
reference (c) USM-controller output (d) U-controller output 
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Figure 17 USM-control-based compensated inverter output 

 

For controlling mismatched plant with system noise/disturbance, from Figures 16(a) and 
16(b), there is no doubt that USM-control-based control system shows better performance 
than U-control-based control system. With the influence of the uncertain system 
coefficient and noise, USM-control system can converge and track the reference perfectly, 
however, U-control system even cannot converge. From Figures 16(c) and 16(d), because 
of the different convergence abilities of these two systems, U-controller output is also 
divergent. The reason for the chattering in USM -controller output is to counter the impact 



   

 

   

   
 

   

   

 

   

    Sliding mode plus U-control method for continuous time SISO dynamic systems 91    
 

    
 
 

   

   
 

   

   

 

   

       
 

of high frequency noise interference. From Figures 9, 13 and 17, different from the 
compensated inverter output of perfectly matched simplified helicopter model,  
USM-control-based compensated inverter in mismatched controlled system starts working 
to force the dynamic inversion match the mismatched simplified helicopter model, that 
is, to reach 1 1( ) 1P e MG G G    anyway. 

6 Conclusions  

This paper introduces a new sliding mode augmented U-control method ( SMU -control) 

for tracking, which shows strong stability in control of uncertain and disturbing plants. 
The overall scheme is based on the U-control structure wherein its dynamic inverter is 
compensated by robust Sliding Mode Control (SMC). This work is able to combine the 
strong robustness of the SMC method and the control-oriented nature of the U-control to 
provide a comprehensive uncertain system control scheme; therefore, it is expected to 
prove clearly useful for practical control applications. 

For the future work, firstly, the proposed method should be further tested and 
analysed to show its comparative advantages and disadvantages. The USM-control method 
is only SISO systems, therefore, this proposed scheme should be expanded to Multiple-
Input and Multiple-Output (MIMO) systems, especially underactuated and over-actuated 
systems. 
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