
Int. J. High Performance Computing and Networking, Vol. 16, No. 1, 2020 55

Copyright © 2020 Inderscience Enterprises Ltd.

XtremDew: a platform for cooperative tasks and data
schedulers

Mohamed Labidi*
LaTICE,
University of Tunis,
Tunis, Tunisia
Email: mohamedlabidi@yahoo.fr
*Corresponding author

Oleg Lodygensky
IN2P3,
University of Paris XI, France
Email: ol@iex.ec

Gilles Fedak
INRIA,
University of Lyon, France
Email: gilles.fedak@inria.fr

Maher Khemakhem
Computer Science Department,
Faculty of Computing and Information Technology,
King Abdul-Aziz University, KSA
Email: maher.khemakhem@fsegs.rnu.tn

Mohamed Jemni
LaTICE,
University of Tunis,
Tunis, Tunisia
Email: mohamed.jemni@alecso.org.tn

Abstract: With the emergence of big data, data scheduling is becoming an important field of
research in distributed computing. Software data scheduler often relies on data management
policies that can be defined by the user and provide high level features. Such advanced features
become necessary nowadays to execute data intensive applications, and this implies that data and
task schedulers should cooperate closely to address the large data processing issue and ensure an
optimal distribution of data intensive applications. In this paper, we propose XtremDew, the data
and task cooperative scheduler platform. We deal with the distribution of the optical character
recognition (OCR) on large scale. We show, in particular, the benefit of the focus on data
scheduling to distribute our OCR application. We build the data driven distributing platform by
combining two existing middleware: BitDew, as the data scheduler, and XtremWeb-HEP, as the
task scheduler. Taking advantage of both middlewares, XtremDew provides new features. To
evaluate the efficiency of our approach, we compare different strategies of scheduling tasks and
data and we present several scenarios that illustrate the benefits of using XtremDew to execute
data-intensive applications.

Keywords: big data; data intensive application; cooperative middleware; big data processing.

Reference to this paper should be made as follows: Labidi, M., Lodygensky, O., Fedak, G.,
Khemakhem, M. and Jemni, M. (2020) ‘XtremDew: a platform for cooperative tasks and data
schedulers’, Int. J. High Performance Computing and Networking, Vol. 16, No. 1, pp.55–66.

Biographical notes: Mohamed Labidi received his Master’s degree in Information Systems and
New Technologies at the Faculty of Economics and Management from the University of Sfax,
Tunisia in 2007. He is currently university assistant in computer science at the Faculty of
Medicine of Sfax, Tunisia and PhD student – member of Research Laboratory of Technologies of
Information and Communication – Tunisia. His research interests include distributed systems,
HPC, IoT in healthcare (connected medical devices).

56 M. Labidi et al.

Oleg Lodygensky is CEO of iExec: Blockchain-based Decentralised Cloud Computing since
2017. Before that, he has been an Engineer at LAL (http://www.lal.in2p3.fr), a High Energy
Physics (HEP) Laboratory of University Paris South – Orsay from 2010 to 2012. He has been a
partner of European projects DEGISCO and EDGI from 2008 to 2010: partner of the EDGeS
European Project (http://www.edges-grid.eu/); leader of the network activity ‘NA3:
standardisation procedures’ since 2006: leader of the XtremWeb-HEP (http://www.xwhep.org)
global computing platform based on XtremWeb 1.8 by INRIA. From 2000 to 2006: member of
LRI-INRIA (http://www.lri.fr) in a LAL-LRI project: study of the XtremWeb global computing
platform usage for HEP applications.

Gilles Fedak is the CEO and co-founder of iExec: Blockchain-based Decentralised Cloud
Computing. iExec builds a decentralised market place for computing resources using the
Ethereum blockchain. The first version of the product released in November 2017. Before that,
he was a permanent INRIA research scientist at ENS-Lyon, France. After receiving his PhD
degree from University Paris Sud in 2003, he followed a postdoctoral fellowship at University
California San Diego. He produced pioneering software and algorithms in the field of grid and
cloud computing that allow people to easily harness large parallel systems consisting of
thousands of machines distributed on the Internet. I co-authored more than 80 peer-reviewed
scientific papers and won two best paper awards.

Maher Khemakhem received his Master of Science, his PhD and Habilitation accreditation
degrees from the University of Paris Sud (Orsay), France respectively in 1984, 1987 and the
University of Sfax, Tunisia in 2008. He is currently Full Professor in Computer Science at the
Faculty of Computing and Information Technology, King Abdulazis University, KAS. His
research interests include distributed systems, HPC, performance analysis, networks security and
pattern recognition.

Mohamed Jemni is a Professor of Computer Science and Educational Technologies at the
University of Tunis, Tunisia. He is the Director of ICT Department at The Arab League
Educational, Cultural and Scientific Organisation (www.alecso.org) from October 2013. He has
been the General Director of the Computing Center El Khawarizmi, the internet services provider
for the sector of higher education and scientific research in Tunisia, from 2008 to 2013. At
ALECSO, he is currently leading several projects related to the promotion of effective use of ICT
in education in the Arab world. He produced two patents and published more than 300 papers in
international journals, conferences, and books.

1 Introduction

With the advent of distributed computing, several research
studies focused on task scheduling to improve the
distribution of compute-intensive applications on different
distributed computing infrastructures (Alworafi et al.,
2019). Data management has become a main concern to
support data-intensive applications efficiently following the
generalisation of big data applications (Saidala and
Devarakonda, 2019). Data management includes several
types of operations, such as fault tolerance, multi-protocol
file transfer, locality-aware data distribution, reliable and
multi-tenant storage, data privacy and security, etc. which
necessitate specific software. Furthermore, moving very
large datasets can be prohibitive when considering large
scale infrastructure. Consequently, obviously, numerous
high-level data management environments have been
developed, such as Stork (Kosar and Livny, 2004), BitDew
(Fedak et al., 2008) and iRODS (Rajasekar et al., 2010),
which are capable of making optimal choices regarding data
distribution and data placement. This concern has pushed
researchers to sometimes give priority to data distribution
rather than the distribution of tasks when dealing with
large-scale distributed computing. We call this approach
‘tasks follow data’. While using software dedicated for data

management, the distribution of big data applications
necessitates a cooperation between the data schedulers and
the task. To the best of our knowledge, very few studies
have addressed the intrinsic relationship between
independent data scheduler and task scheduler in the context
of large-scale distributed computing.

In this work, we propose an innovative approach to the
topic of data-driven task scheduling, which we named
XtremDew. It is a data-driven distributed computing
platform that uses two independent middleware: BitDew,
for data scheduling, and XtremWeb-HEP (He et al., 2010)
for task scheduling. XtremDew enables both schedulers,
XtremWeb-HEP and BitDew, to implement cooperative
data and task scheduling. XtremWebHEP is an open source
middleware designed for executing large bag-of-tasks
applications on grids, volunteer cloud and cloud
infrastructures. BitDew has been designed to manage large
data and permit optimal data placement on distributed
infrastructures. It implements scheduling heuristics whose
robustness has already been demonstrated in our previous
work.

The objective of XtremDew is to benefit from the
advantages of both middleware’s features, i.e., for
XtremWeb-HEP: fault-tolerance, tasks scheduling,
virtualisation and high security, and for BitDew: data

 XtremDew: a platform for cooperative tasks and data schedulers 57

replication, locality-aware data placement strategy,
life-cycle management and multi-protocol file
transfer. During the implementation phase of our
cooperative-scheduling system, we faced a number of
challenges, namely:

1 The adaptation of the two middlewares in order that
they can communicate together. In fact, these
middlewares are not originally designed to cooperate;
hence, an inter-scheduler solution had to be devised to
permit cooperation between them.

2 The selection of a proper scheduling policy that meets
our needs.

3 The adaptation of the task scheduler so that it assigns
tasks only to the nodes where the data have already
been sent by the data scheduler.

In this paper, we show that by responding to these three
challenges, we succeed to develop this middleware
cooperation named XtremDew. We show also that
XtremDew offers several innovative features that were not
possible before, such as:

1 The simplicity of deployment of multiple applications
via multiple data collections.

2 The data-aware task placement to accelerate workflow
execution: in the case of successive tasks, where the
result of the first task is the input of the second task, it
is better to avoid the redistribution of the intermediate
result.

3 The opportunity for the user to select a subset of
distributed computing resources (called workers) for
the scheduling of tasks.

We evaluate the performance of our solution by comparing
three approaches of distribution of large-scale OCR which
are: task-first scheduling using XtremWeb-HEP, data-first
scheduling using BitDew, and co-scheduling data and tasks
using XtremDew. In addition, we present some scenarios in
order to prove the validity of each feature of XtremDew.
This paper is organised as follows: in Section 2, we explain
the motivations of large-scale OCR and we introduce our
OCR application. Section 3 provides the first approach of
distributing large-scale OCR, which involves deploying
Magick application on XtremWeb-HEP. Section 4 presents
the second approach of distributing large-scale OCR with
BitDew. Section 5 sets forward the XtremDew architecture
and the communication protocol between XtremWeb-HEP
and BitDew to ensure the proper functioning of XtremDew.
Section 6 presents the evaluation of the performance of
XtremDew by use cases, in this section, we presents also the
evaluation of the performance of XtremDew by use cases.
Section 6 provides related work while Section 7 concludes
and presents some perspectives.

2 Large-scale OCR

2.1 Challenge and distribution motivations

In parallel with the evolution of data management, several
‘big data’ applications have seen an evolution in their
implementation motivated by innovation in distributed
infrastructures and the diversification of devices producing
data flows. Optical character recognition (OCR) on a large
scale is an illustrative example of this evolution of
implementation. Indeed, several projects are developed
during the last decade to address this need in different ways.
Starting from the robotic digitisation proposed by the Kirtas
project (https://www.kirtas.com/) which allows the
automatic digitisation of the books of several libraries to the
platform for distributed and cooperative OCR systems
proposed by the OCRGrid project (http://www.ocrgrid.org/)
then the online service ‘Cloud OCR SDK’
(https://www.ocrsdk.com/) marketed by ABBYY. All these
projects and others show that large scale OCR has become
more and more a challenge and consequently, the OCR
distribution can be considered as a very interesting solution
to this challenge.

2.2 Magick: the OCR application

In this section, we present Magick, the Arabic OCR
application based on dynamic time warping (DTW)
algorithm (Khemakhem and Belghith, 2005). Studies and
experiments, mainly for large vocabularies, have shown and
confirmed that the printed Arabic OCR – based on DTW
algorithm – delivers high recognition rates (Khemakhem
et al., 2007). The recognition process performed using a
reference library of isolated characters with an excellent
immunity against noise is considered as the main advantage
of the DTW algorithm. What is more, this algorithm makes
it possible to recognise either cursive or connected
characters (sub words or words) without the need for a prior
segmentation, which is an interesting feature.

In this work (Khemakhem and Belghith, 2009;
Khemakhem et al., 2007), authors proved that DTW data
distribution over a grid computing architecture provides
very interesting results to speed up the DTW execution time
and reach scalability.

3 First approach: task first scheduling for
distributed large scale OCR

3.1 Traditional distribution: task first scheduling

In this first approach we deal with a traditional distribution
of the Magick OCR application. We mean by traditional
distribution, the distribution which focuses on tasks. Indeed,
the distribution consists on assigning tasks firstly to
different workers to participate to the computation. After
that, these workers ask the server for appropriate data to
execute the received tasks.

58 M. Labidi et al.

3.2 XtremWeb-HEP middleware

We used XtremWeb-HEP which is a volunteer cloud
middleware to explore scientific issues and applications.
Volunteer cloud (Costa et al., 2011) are intended to
aggregate distributed volunteer computing resources
(known as worker in XtremWeb-HEP) and distribute tasks
on demand.

XtremWeb-HEP works as follows: after connecting to
the server, the worker downloads a task (which consists in a
binary code and its associated data). The downloaded binary
code is then executed. This mode is referred to as the pull
mode. XtremWeb-HEP project infrastructure could be based
on a community of participants. For instance,
XtremWeb-HEP makes it possible for a university, or a
corporation to run a volunteer cloud for either a range of
applications or a specific one.

Recently, XtremWeb-HEP has introduced an innovative
feature dubbed ‘volunteer sharing’. The latter will be the
basis for the XtremDew system. It has now become
possible, thanks to volunteer sharing paradigm, to deploy
some types of particular applications like virtual machines,
hypervisors, GPUs and other applications whose
deployment was not possible with classic DGC. In fact, with
classic DGC, a user has to deploy all required environments
to be able to deploy an application, which is very difficult
and even impossible for the above-mentioned applications.
The latest XtremWeb-HEP’s version differentiates between
shared objects and deployable objects. In previous
XtremWeb-HEP versions, there were no other types of
objects apart from the deployable ones. This object should
be downloaded by volunteer resources. However, shared
objects are never downloaded since they are considered as
resources. Indeed, thanks to the volunteer sharing paradigm,
the worker can suggest some objects to share such as
library, data and applications. Note that with volunteer
sharing paradigm, workers keep the pull mode mechanism
but if they propose to share some resources, these latter can
be utilised by the whole platform. Like deployable objects,
all shared objects should be registered on the server side.
However, the objects that have been registered as ‘voluntary
sharing’ are not downloaded by the worker because the
latter must have already saved a local copy (i.e., of this
‘voluntary sharing’ object). For instance, if the shared
object consists of data, volunteer resources which have this
data could be selected to compute jobs referring to this
specific data. However, volunteer resources which do not
have this data – and/or do not declare it as a ‘sharing’ – will
not be selected to run jobs referring to this data. The
volunteer sharing paradigm is primordial in the XtremDew
project. In fact, the data deployed by BitDew is considered
as shared by XtremWeb-HEP.

3.3 Deployment of magic over XtremWeb-HEP
middleware

XtremWeb-HEP middleware distributes tasks and bags of
task. But the assignment of data to various tasks must be
ensured by the user. In fact, the user starts by preparing the

data to be processed by each task so that he can
subsequently submit it to the XtremWeb-HEP server which,
in turn, assigns it to the workers participating in the
distributed recognition.

To deploy any application using XtremWeb-HEP, the
user must follow a process which starts by the registration
of the application, after that the deployment by task
submission, then finally the downloading of the results. In
our case, we wish to distribute the OCR of large Arabic
documents by deploying Magick application. We follow the
master/worker architecture. We should firstly register
Magick on the server side. Thereafter, we can choose one of
the two possibilities to distribute the large scale OCR. The
first one is to send all data to be processed to the server. The
latter will register these data and then return the uniform
resource identifier (URI) of each data. This URI will be
used later by the user, when submitting the tasks, in order to
reference registered data. The second possibility is to create
all tasks as directories; each one contains the part of the data
to be processed and the program to run. After that, we have
to submit these tasks without prior registration of data. We
have adopted the last option because it is more suitable for
data collection since the URI management (i.e., of data
collection) is a tedious work for the user. Besides, this
choice allows reducing the register-time of data. Once all
the tasks have been submitted, the user can follow the steps
of their execution by requesting the server. The latter is
responsible for the distribution of the tasks among the
workers. Once all tasks are executed, the user can download
results by requesting them from the server.

In order to ensure load balancing, the corpus of Arabic
documents to be recognised is split with the intention that
all the tasks have about the same number of documents.
However, this equity in distribution is confronted with the
heterogeneity of the data sizes. Moreover, this strategy is
useful only if the computing powers of the workers are
homogeneous.

It is possible to modify the granularity of the tasks by
varying the number of documents to be processed by each
task. In our experiments, we chose to vary this granularity
to look for the optimal distribution that gives the best
response time.

We define response time by the time necessary to
complete the recognition of the entire corpus (consisting of
1,000 images). We have created tasks which granularities
are: 50, 10, 5 and 4 images per task, respectively. In other
words, the user can submit 20, 100, 200 or 250 tasks.

Table 1 shows the correspondence between the
granularities of tasks and the number of tasks.

Table 1 Correspondence between the granularities of tasks
and the number of tasks

Task granularity Number of tasks

50 20

10 100

5 200

4 250

 XtremDew: a platform for cooperative tasks and data schedulers 59

3.4 Performance evaluation

It is well known that according to Amdahl law the speedup
factor is given by the flowing equations:

1

(1) /


 
latencyS

p p s

where

 Slatency is the theoretical speedup of the execution of the
whole task

 s is the speedup of the part of the task that benefits from
improved system resources

 p is the proportion of execution time that the part
benefiting from improved resources originally
occupied.

The corresponding experiments were conducted in two
clusters of Lyon and Nancy Grid5000 sites. The network
configuration for the experimental environment is illustrated
in Table 2.

Table 2 Configurations of resources used

Cluster Type Nodes CPU Mem. Site

Sagittaire Sun Fire 74 AMD
2.4 GHz

2 GB Lyon

Graphene Carri
System

144 Intel
2.54 Ghz

16 GB Nancy

Figure 1 shows the variation of the response time depending
on the granularity of tasks and the number of workers. The
x-axis represents the number of workers and the y-axis
corresponds to the response time.

Figure 1 Effect of task granularity on response time
(see online version for colours)

We see a gain in response time that is growing along with
the growing number of workers and decreasing with the
granularity of tasks.

This gain in response time is explained by the reduction
of the amount of work assigned to each worker giving the
increasing of the number of workers.

On the other hand, decreasing the granularity of tasks
means an increased number of tasks that will accomplish the
same amount of work, allowing a more balanced
distribution (i.e., of tasks).

We also find that the reduction in response times is
more significant with the increase of a small number of
workers. This is due to the important reduction in the
number of tasks in this case. For example, between 4 and 8
workers, the number of images assigned to each worker is
reduced by 125 images. On the other hand, between 32 and
64 workers, the number of images assigned to each worker
is reduced by only 15 images.

This approach has the disadvantage of manual
preparation of task bags. Indeed, according to the number of
tasks to be distributed, the user must choose the granularity
of tasks and build the compressed files containing the
images to be recognised by each worker. On the other hand,
this manual preparation does not take into account the
heterogeneity of the images sizes.

On the other hand, with BitDew, as we will see, the
assignment of data to the workers is periodic and depends
on a scheduling heuristic.

4 Second approach: data first scheduling for
distributed large scale OCR

4.1 The data-driven master/slave approach

The data-driven approach differs from the traditional
approach in focusing on data rather than tasks. Indeed, with
the data-driven approach, the master begins by assigning
data, which is parameterised by attributes that dynamically
control their distribution over the workers. Once the data
needed to perform tasks are available on the workers, these
tasks begin to be executed.

At the scheduling level, with the data-driven approach, a
first scheduling step is already performed by placing the
data on the workers. On the other hand, programmers are
not concerned with placing tasks on workers. Instead, they
should focus on the distribution of the data to be processed
by the tasks when they are assigned. The major advantage
of the data-driven approach is that the distribution of data to
workers is implicit and dynamic using data attributes. The
assignment of data before the tasks is also adopted by
MapReduce (Dean and Ghemawat, 2008), the well-known
programming model for data intensive application. This
model is a Google product for handling massive amount of
web search data. With MapReduce, large jobs are broken
down into small tasks. Each task is defined by the user as
Map or Reduce.

4.2 BitDew middleware

BitDew is a middleware designed for large-scale data
management and distribution on desktop grid and cloud
systems. BitDew is capable of governing data. In fact, the
user can dynamically control data operations (such as
distribution, placement, replication, etc.) onto the storage
nodes using metadata called data attributes. In particular,
data placement can be governed by applying the appropriate
scheduling heuristic, i.e., the one suitable for a specific
application.

60 M. Labidi et al.

Amongst the data attributes of BitDew, we mention:

 Fault tolerance: Designates the resilience of data in the
case of machine break down.

 Replica: Defines the number of instances of a data that
must be present at any given time in the system.

 Affinity: Manages data placement in accordance with
dependency rules. This is a helpful parameter when a
data should be assigned to a specific node with
previously scheduled data.

 Lifetime: Specifies the period after which a storage host
can safely delete a data. This attribute can be absolute
or relative to the presence of other data.

 Transfer protocol: Defines the transfer protocol selected
by the user to distribute the data. In fact, the user can
choose the appropriate transfer protocol depending on
the size of the data or the number of nodes required to
distribute these data.

 Distrib.: Identifies the number of data that each node
can have in its queue. It limits the number of data
scheduled by the server and makes this assignment in
accordance with the load of each node. This parameter
will be used with XtremDew to define the suitable data
scheduling heuristic which guarantees the load
balancing.

4.3 Adapting BitDew: added abilities

BitDew is intended for large-scale data management. We
added task management capability to enable it to deploy the
Magick application and other similar applications for
intensive data processing. Such applications take advantage
of the advanced data management features offered by
BitDew.

The task management capability is integrated in the
worker and therefore depends on the application to be
distributed. Whenever a worker receives a piece of data to
be processed, he calls on the responsible application to
process this piece of data which is already assigned to him
by the server at the beginning of the work. The received
data is considered completely processed only after the
completion of the execution of the user’s application. In this
case, the worker can delete the processed data, update his
queue to possibly receive another data and call the user’s
application again

4.4 Deployment of Magick over BitDew middleware

Due to the data-driven architecture followed by BitDew,
data should be firstly assigned by the server to worker
nodes. We run two programs on the server node in order to
deploy our OCR application with a master/worker
architecture. The first program will start all BitDew
services, while the second will schedule data to workers
after registering data and creating data collection. After that,
we execute the worker program on worker nodes. The latter
alert the server of their presence, ask for data, run the OCR

application to process these data and finally return the result
to the user. In order to optimise data distribution on the
computing nodes, we implemented some scheduling
heuristics in our previous work (Labidi et al., 2017). These
heuristics are evaluated with both homogeneous and
heterogeneous environments. We observed in particular that
sorting data before their assignment to computing nodes and
controlling the number of data present in the queue of each
computing node optimise the data placement on computing
nodes.

Here, we benefit from the data placement capacity of
BitDew to improve the distribution of our OCR application.
To achieve this, we deploy the ‘Magick’ application with
different data scheduling heuristics to determine the best
one and then compare it with the best result obtained by
XtremWeb-HEP. We apply three scheduling heuristics
implemented by BitDew, i.e.,

1 Round Robin (RR): This means that the server
periodically assigns one data item to each worker
without considering the number of data in its queue.

2 First come first serve with overlap 2, (FCFS-overlap-2):
Means that the server sends one data to each worker
having at least 1 data in its queue.

3 First come first serve with overlap 2, biggest data first
(FCFS-overlap-2-BDF): The same as FCFS-overlap-2,
but starting by assigning the biggest data.

Figure 2 Effect of data scheduling on response time
(see online version for colours)

Figure 2 shows the response time that each heuristic
provides. It is clear that the worst result is provided by the
Round Robin heuristic, while the FCFS-overlap-2-BDF
provide the best recognition time. Such result proves that
the sorting of data before its assignment to computing
nodes, in addition to the governance of data present in the
queue of computing nodes, achieves load balancing and,
therefore, improves the performance.

In Figure 3 we compare the FCFS-overlap-2-BDF
heuristic with the best result obtained by XtremWeb-HEP
which is the granularity of five images per tasks. We
observe that the FCFS-Overlap-2-BDF scheduling heuristic
outperforms the best result obtained by XtremWeb-HEP
which proves the benefit of focusing on data distribution

 XtremDew: a platform for cooperative tasks and data schedulers 61

strategies and the data driven distribution of data intensive
applications.

Figure 3 BitDew vs. XtremWeb-HEP performance
(see online version for colours)

5 Third approach: co-scheduling data and task
for distributed large scale OCR

5.1 The motivations for cooperation

Note that with BitDew, it’s impossible to deploy only
applications. They must be integrated within the worker
Bitdew. Indeed, the deployment over BitDew concerns data
associated with a specified application and, consequently, it
is impossible to switch applications on the fly. On the other
hand, with XtremWeb-HEP, it is impossible to deploy data
separately of tasks. By combining XtremWeb-HEP and
BitDew, we obtain a middleware which is able to deploy
data and applications independently.

This third approach consists on cooperate BitDew and
XtremWeb-HEP schedulers in order to benefit from the
strength of each one of them, namely the data scheduling of
BitDew and the tasks scheduling of XtremWeb-HEP. We
call the proposed cooperation system ‘XtremDew’. First, we
will use BitDew’s ability to allocate data (Labidi et al.,
2012) which optimises data scheduling. Second, we will
benefit from XtremWeb-HEP’s task deployment
competence (He et al., 2010) and consequently get rid of
data-application dependency and automate the scheduling of
tasks.

5.2 XtremDew design

XtremDew follows a master/worker architecture for which
the server attributes data and tasks to every computing
resource (worker node). XtremDew separates data from task
scheduling by exploiting at the same time both middleware:
XtremWeb-HEP for the scheduling of tasks and BitDew for
the scheduling of data. Figure 4 shows the global
architecture and the different XtremDew components. We
independently run two server programs: the BitDew server
and the XtremWeb-HEP server, and execute – in each
worker node – two worker programs: the XtremWeb-HEP
worker and the BitDew worker. Each worker program
communicates and retrieves information from its server in

pull mode: it asks for tasks and data from, respectively, the
XtremWeb-HEP and the BitDew servers.

Figure 4 Global Architecture of XtremDew (see online version
for colours)

In order to properly implement this architecture, we have to
make the most appropriate decisions concerning some
alternative choices. In the following, we define these
decisions by answering a number of questions:

1 Given the fact that data scheduling and task scheduling
are separated, how can each data item be matched with
its task?

2 How to organise communication and coordination
between servers and workers?

3 Once the task is achieved, which component will
manage and transfer the result: XtremWeb-HEP or
BitDew?

4 With BitDew, a large amount of files can be handled as
a whole via the ‘data collection’ concept. How to make
a correlation between the data collections of BitDew
and the tasks scheduled by the XtremWeb-HEP server?

Let’s provide solutions to these issues and then give details
about the communication between XtremWeb-HEP and
BitDew. For the first question, we apply a
‘tasks-follow-data’ strategy, thanks to the ‘data-driven’
policy of BitDew. For this strategy, data are firstly assigned
to workers by the BitDew server. Afterward, each data item
received should be matched with its corresponding task.
XtremWeb-HEP server will then submit tasks to the
appropriate workers. The second question was about the
communication between servers and workers. As we can see
in Figure 4, we choose communication to be only at the
worker level and we never allow servers to communicate.
Indeed, this choice means that the BitDew worker notifies
the XtremWeb-HEP worker of the data received so that it
can request the proper task from its server. In addition,
thanks to this inter-workers communication, we can exploit
the capacity of XtremWeb-HEP to define shared data and,
consequently, XtremWeb-HEP middleware will be able to
cooperate and communicate with BitDew without making
major changes. Furthermore, by allowing the workers to
communicate, we attain our goal without the need to setup
communication between servers. This helps avoid the

62 M. Labidi et al.

change in server scheduling strategies. The third question
concerns the choice between the XtremWeb-HEP or the
BitDew approach to manage and transfer the result. With
BitDew, the results are handled and transferred explicitly by
the worker; whereas XtremWeb-HEP approach requires the
passage of the result through the server. We adopt the
BitDew approach for two reasons: we have programmed the
BitDew worker in order to implement a ‘worker-to-client
direct communication’. Thus, it (i.e., the BitDew worker)
returns the result to the user automatically without the need
for its intervention. Conversely, with XtremWeb-HEP, the
user should download the results by himself. Consequently,
the transfer of the results requires a considerable time since
they should go through the server. The second reason is that
the XtremWeb-HEP server automatically removes the data
once its results have been transferred. Consequently, the
BitDew worker will be confused when updating its queue
since the XtremWeb-HEP server interferes with the data
placement and, thus, negatively cooperates with the BitDew
worker. For the fourth question, we match data collection
with a task by defining a task in XtremWeb-HEP which
refers to a specific data collection. This task will be
executed on each element of the referred data collection.
For instance, if a user has a data collection in BitDew,
called ‘DataC1’ that contains 50 files to be processed by the
same task, rather than submitting 50 tasks, he can simply
submit only one task which refers to the data collection
‘DataC1’.

Figure 5 BitDew-XtremWeb-HEP collaboration
(see online version for colours)

The sequence of interactions between the user and the
different components of XtremDew to deploy an application
is illustrated in Figure 5. It shows the exchange of
information between the user and the XtremWeb-HEP
server, which is responsible for the task scheduling, the
BitDew server that is responsible for the data scheduling
and one worker node (in which we run, obviously, two
programs: Bitdew worker and XtremWeb-HEP worker).

The steps of deployment are as follows:

1 The user should:

a start the XtremWeb-HEP server

b start the BitDew server

c register its application on the XtremWeb-HEP
server

d submit a replicated task to XTREMWEBHEP
server

e register the data collection to be processed on the
BitDew server

f start the XtremWeb-HEP worker program on
workers

g start the BitDew worker program on workers.

2 BitDew workers connect to BitDew server and ask for
data.

3 The BitDew server assigns the data to be processed to
the available workers, according to the scheduling
heuristic chosen by the user.

4 In each worker node, the BitDew worker notifies the
worker XtremWeb-HEP of the presence of the data
received by the server.

5 The XtremWeb-HEP worker considers the received
data as a shared data and informs its server that it is
ready to run a task which corresponds to this data.

6 The XtremWeb-HEP server assigns to this worker a
task that corresponds to this particular data.

7 The XtremWeb-HEP worker runs the task, produces the
result and notifies its server that the task is completed.

8 The BitDew worker detects the presence of the result,
transfers it to the user, deletes the processed data,
updates its queue, and asks the BitDew server for a new
data.

9 If the BitDew server still has data to schedule, go to
step 3, else, end of work.

The worker BitDew must prepare each data received from
its server to be processed by the worker XtremWeb-HEP.
This preparation consists in the decompression and the copy
into a new folder. This folder is used by the worker
XtremWeb-HEP to retrieve the data and process it. After
that it is used by the BitDew worker to retrieve the result of
the task and transfer it to the user. Once the data is prepared,
the worker BitDew informs the worker XtremWeb-HEP of
the presence of the data. So we need an inter-worker
notification in both directions:

1 BitDew worker must notify XtremWeb-HEP worker of
all data received so as to be able to ask the server
XtremWeb-HEP the proper task.

2 BitDew worker must be informed when
XtremWeb-HEP worker completes the execution of the
task so that it updates its queue and requests new data.

 XtremDew: a platform for cooperative tasks and data schedulers 63

Given that XtremWeb-HEP worker has already a socket on
which he is listening; we choose to implement the first
communication by socket. Indeed, BitDew worker opens the
socket in which it indicates the path of the data received as
well as its data collection name. The latter will be used by
the XtremWeb-HEP server as DataPackageName of a
shared data to select the appropriate task. This
communication serves to notify the XtremWeb-HEP worker
each time a data is added to the queue of the worker BitDew
or deleted from it. The second communication was not
implemented by socket since the BitDew worker can know
that the task is completed by detecting the presence of the
result. Hence this communication was simplified by an
implicit notification.

Furthermore, we implement the correlation between task
and data collection by adding a new parameter to the task
description of XtremWeb-HEP named DataPackageName
which will have the same value of the Data Collection
name. Using this DataPackageName, each task can
reference a data received by the BitDew worker. Moreover,
we enrich the XtremWeb-HEP task’s parameter by adding a
new feature facilitating the work of the user which is the
possibility to submit a replicated task. Indeed, instead of
submitting the same task several times, the user can use a
parameter that specifies the number of times this task should
be scheduled and then submit this task for only once. This
feature automates job submission.

For instance this command consists of submitting one
task named Magick, replicated for 120 times. This task
refers to a shared data to which the attributed package name
is ‘text’.

 xwsubmit magick 1 xwreplica 120 xwpackage text

5.3 Evaluation by scenario

We explain in this section the benefits of XtremDew in
terms of new features provided (and which were not
possible with BitDew or XtremWeb-HEP alone).

Combining the best elements of these two systems allow
us to define more functionality and overcome the
difficulties associated with:

1 making easy the deployment of multi-application and
multi-dataset

2 speedup of workflow applications

3 limiting the task scheduling to a subset of workers.

In the rest of this paper we will explain each of these
features by giving some use cases.

5.3.1 Ease of deployment of multiple applications
and multiple data collections

This is one of the advantages of XtremDew compared to
BitDew and XtremWeb-HEP middlewares. To illustrate this
first added value, we will consider the case of the
deployment of two applications A1 and A2, processing
respectively data collection 1 and data collection 2. Figure 6

illustrates the activities performed by the user to deploy A1
and A2 as well as their data collections over each
middleware: XtremWeb-HEP, BitDew and XtremDew. The
yellow colour presents activities relative to XtremWeb-HEP
services and the pink colour presents activities relative to
BitDew services. with XtremWeb-HEP middleware,
executing application A1 on data collection 1, consist in
preparing and submitting a task for each element of the data
collection. Therefore, if data collection 1 has n elements, n
tasks are going to be submitted and n results are going to be
downloaded. The creation of tasks, their submissions as
well as the download of the results are costly in terms of
performance and are avoided with XtremDew middleware.

Figure 6 User activities to deploy tow applications and tow data
collections with XtremWeb-HEP, BitDew, and
WtremDew (see online version for colours)

As with any data management system, BitDew middleware
has no application catalogue. In other words, the worker
program of BitDew is developed according to the
application, and the deployment of workers (distribution,
compilation and execution of BitDew worker program)
depends on the application to run on these workers. Hence,
to insert a new application, the user must deploy again all
workers. For example, to deploy A2, the user should wait
until the achievement of all the tasks of A1 and then stop all
workers. It is impossible to change the application on the fly
without stopping workers program. Conversely, with
XtremDew, thanks to the separation of two servers: tasks
and data, the deployment of workers no longer depends on
the application to run by these workers. Consequently, the
user does not need to make a new deployment of BitDew
workers for each data collection. He needs to deploy only
for one time the workers, distribute both data collections by
the same deployment and submit only one replicated task
that references this data collection.

The worker can, permanently, receive from its server
different data from different collections to be processed by
different applications also.

64 M. Labidi et al.

Use case

This feature is useful when the user has multiple data
collections, each one has to be processed by a separate
application. In the field of recognition, the user may have
various types of scanned documents from different
languages. Each type of these documents should be treated
by the adequate OCR application. To test this use case, we
built a second collection of English documents and we
chose Tesseract application (Smith, 2007) to ensure their
distributed recognition.

Figure 7 Number of results of Magic and Tesseract applications

To distribute the recognition of Arabic and English
documents over XtremDew middleware, we submit both
data collections to the BitDew server. Thereafter, we submit
two replicated tasks to the XtremWeb-HEP server; each one
corresponds to one data collection. Each BitDew worker
will receive permanently data from its server and regardless
of the collection to which the received data belong, it must
always handle its queue in term of number of data according
to the scheduling heuristic adopted. Figure 7 shows the
number of results returned by workers each minute, giving
that we distribute 100 documents of each data collection.
We observe, in particular, that workers begin by performing
tasks related to the Tesseract application. This is explained
by the fact that the server BitDew has begun distributing the
collection of English documents. We also note that between
4 and 7 minutes, we get results from both applications
which proves that workers continue running all tasks
without interruption. Indeed, some nodes start to process
Arabic documents, while others still process English
documents.

5.3.2 Speedup of workflow applications

Reducing computing time by optimising resources
occupation is the focus of many recent works dealing with
big data (Wu et al., 2016a, 2016b; Jeba et al., 2019; others).

In this section, we aim to reduce computing time by the
speedup of workflow big data applications. Workflow
applications correspond to the succession of tasks. It means
to treat by a second task the result of the first one on the
same worker and without repeating the data distribution. By

using only BitDew or XtremWeb-HEP, the deployment of a
second task that uses as input the result of the first one,
requires the collection of the results of the first task and the
distribution of these results as data to be processed by the
second task. However, with XtremDew, through
communication between XtremWeb-HEP and Bitdew
workers, it is possible to consider the output of a task as an
input of another that runs on the same worker, without
having to repeat the distribution. Indeed, the BitDew worker
detects the presence of the result of a task being executed by
the XtremWeb-HEP worker. If the user needs to treat this
result by a second application, the BitDew worker can
consider this result as data already assigned by its server
and notifies the XtremWeb-HEP worker to treat it through a
proper task. This possibility remarkably facilitates the work
of the user when he needs to perform workflow.

Use case

In the same field of recognition, the user may need to
extract knowledge from a scanned document. In this case,
he should deploy, for instance, an application of automatic
summary which treats as input the document recognised by
the OCR application. Another need can appear, i.e., the
translation of the recognised text to another language,
assuming that the user ignores the language of the first
document. In some cases, the user may need to run both
tasks after the recognition of a document: the translation
followed by the extraction of knowledge. Figure 8 illustrates
the task execution order and the data flow between tasks. It
is thanks to XtremDew that a worker executes this sequence
of tasks by only one deployment of data. The user must
submit three replicated tasks: a first one for recognition, a
second one for translation and a third one for knowledge
extraction. The distribution of data is done only once:
before starting the execution of the first task. The worker
BitDew notifies the worker XtremWeb-HEP three times to
ask for three tasks: first to request a recognition task;
second, when the first task is successfully completed, to
request a translation task; finally, after translation, to
request a task of knowledge extraction.

Figure 8 Sequence of three tasks executed by the same worker
(see online version for colours)

 XtremDew: a platform for cooperative tasks and data schedulers 65

5.3.3 Limiting the task scheduling to a subset of
workers

With the enormous and rapid growth of connected objects
and sensors which continue to generate data (Atat et al.,
2018; Wu et al., 2018), optimising the storage of this data is
becoming more and more highly recommended.

With XtremDew, thanks to the ‘data-driven’ approach
adopted by BitDew, we follow a ‘tasks-follow-data’
strategy for which data are initially assigned to selected
workers and, thereafter, appropriate tasks are scheduled to
these workers. XtremDew ensures that each task is
scheduled to the appropriate worker to be properly matched
to the adequate data. This strategy allows the user to limit
the task scheduling to a subset of workers by limiting the
number of workers selected to receive data. This capacity of
selecting compute nodes in task scheduling is useful for
some applications when the computing cannot be made by
all the workers for confidentiality reasons. For instance, we
consider two data collections: DC1, composed of d11, d12,
…, d1n, and DC2, composed of d21, d22, …, d2n, to be
processed respectively by two tasks: T1 and T2. If the
results provided by T1 are confidential, it is possible, as it is
illustrated by Figure 9, to deploy DC1 only on trusted
workers. Whence T1 will be scheduled to these trusted
workers and their results will be consequently protected
from any malicious intruder.

Figure 9 Limiting the task scheduling to a subset of workers
(see online version for colours)

6 Related work

The partnership between IT components to solve data
intensive issues was the subject of several research studies.
For instance, iRODS and the Middleware CiGri for the
Whisper project (2019) propose to collaborate the
distributed storage system iRODS with a grid manager
called CiGri. CiGri is a middleware which allows the access
to a large number of cores from different clusters and
launches parallel jobs on idle processors of these clusters
(CiGri Middleware, 2019). The cooperation between
iRODS and CiGri aims to provide solution to the massive
data processing problem faced the seismology project called
Whisper. There are two major differences between our work
and this one. First, iRODS only provides storage solutions
and cannot be used by itself as a middleware which
provides computing ability. Whereas BitDew provides both
computing and data placement solutions. Second, unlike
XtremDew, iRODS&CiGri is designed to solve a specific

issue related to the Whisper project. It is not designed to
provide a generic solution which supports different kinds of
applications and interests a large set of users.

Romosan et al. (2005) propose architecture for
executing co-scheduled data movement and tasks by the
cooperation of Condor and storage resource managers
(SRMs). Matching of each job to the worker that has the
files needed by the job is achieved by including the
information about the availability of files on the nodes
provided by SRMs into the advertised information used by
Condor.

While several algorithms are compared in this work,
authors only perform simulations, and performance is not
verified on real systems as we have done in our work.
Furthermore, our approach proves that cooperation between
middleware enables new features which is not the case of
this discussed work.

Deng et al. (2013) propose a data and task co-scheduling
strategy that group the mostly related datasets and tasks.
This approach consists on placing application datasets
across distributed data centres and schedule tasks according
to the data layout in order to reduce latency and makespan
for workflow execution.

Makatun et al. (2015) propose a constraint
programming-based planner that schedules data and
computational jobs in a distributed environment with the
aim of optimising resource utilisation and reducing the
processing completion time. The optimisation is achieved
by ensuring that none of the resources (CPUs, data storages
and network links) are oversaturated and that the jobs are
scheduled where the data is already present or the data is
pre-placed at the site where the job runs.

Despite the similarities between our work and the two
aforementioned studies, namely in the data and task
co-scheduling strategy, XtremDew has the advantage of
taking benefit from high-level data management
environment like BitDew in data scheduling and providing
new features, such the speedup of workflow applications
and the easy deployment of multiple applications and
multiple data collections.

7 Conclusions

In this paper, we have ascertained and shown the added
values of XtremDew for executing data-intensive
applications. Indeed, in the case study we have considered,
we have proposed and tested three scheduling approaches to
distribute large scale OCR. The first one namely the task
first scheduling using XtrmWeb-HEP middleware, the data
first scheduling using BitDew middleware and the data
driven co-scheduling data and task using XtremDew which
cooperates both: XtremWeb-HEP and BitDew. We proved
in particular the importance of data-driven architecture and
introduce the ‘task follow data’ strategy by focusing on data
scheduling to improve the performance of large scale OCR.

Our goal was to benefit from the advantages of the task
scheduling of XtremWeb-HEP and the data scheduling
features of BitDew. We proved in particular that the user of

66 M. Labidi et al.

XtremDew can select the suitable data scheduling strategy
as well as the adequate task granularity which provide the
optimal data distribution. In addition, due to the
independence of data and task scheduling, XtremDew
provides an easy deployment of multiple applications with
multiple data collections, a possibility for the user to select
only a subset of resources for task execution and a data
optimisation for workflow execution. In the future, we plan
to add consideration of the iterative processing: according to
the state of the result, it is possible to re-execute the task by
modifying a parameter that influences this result. In
addition, in the context of hybrid cloud, we can plan a
workflow for which some of the processing is done locally
and the rest is done in the cloud in order to execute stream
applications and to follow the green revolution.

References

Alworafi, M.A., Dhari, A., El-Booz, S.A. and Mallappa, S. (2019)
‘Budget-aware task scheduling technique for efficient
management of cloud resources’, IJHPCN, Vol. 14, No. 4,
pp.453–465.

Atat, R., Liu, L., Wu, J., Li, G., Ye, C. and Yi, Y. (2018) ‘Big
Data Meet Cyber-Physical Systems: A Panoramic Survey,
DOI: CoRRabs/1810.12399.

CiGri Middleware (2019) [online] http://ciment.ujf-grenoble.fr/
cigri/dokuwiki (accessed 10 April 2019).

Costa, F., Silva, L.M. and Dahlin, M. (2011) ‘Volunteer cloud
computing: MapReduce over the internet’, in IPDPS
Workshops, IEEE, pp.1855–1862.

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data
processing on large clusters’, Communications of the ACM,
Vol. 51, No. 1, pp.107–113.

Deng, K., Ren, K., Song, J., Yuan, D., Xiang, Y. and Chen, J.
(2013) ‘A clustering based coscheduling strategy for efficient
scientific workflow execution in cloud computing’,
Concurrency and Computation: Practice and Experience,
Vol. 25, No. 18, pp.2523–2539.

Fedak, G., He, H. and Cappello, F. (2008) ‘BitDew: a
programmable environment for large-scale data management
and distribution’, in SC, IEEE/ACM, p.45.

He, H. Fedak, G., Kacsuk, P., Farkas, Z., Balaton, Z., Lodygensky,
O., Urbah, E., Caillat, G., Araujo, F. and Emmen, A. (2010)
‘Extending the EGEE grid with XtremWeb-HEP desktop
grids’, in CCGRID, IEEE Computer Society, pp.685–690.

iRODS and the Middleware CiGri for the Whisper project (2019)
[online] https://irods.org/uploads/2014/06/BriandBzeznik
IrodsUserMeeting2014.pdf (accessed 13 April 2019).

Jeba, J.A., Roy, S., Rashid, M.O., Atik, S.T. and
Whaiduzzaman, M. (2019) ‘Towards green cloud computing
an algorithmic approach for energy minimization in cloud
data centers’, IJCAC, Vol. 9, No. 1, pp.59–81.

Khemakhem, M. and Belghith, A. (2005) ‘A multipurpose
multi-agent system based on a loosely coupled architecture to
speedup the DTW algorithm for Arabic printed cursive OCR’,
in AICCSA, IEEE Computer Society, p.121.

Khemakhem, M. and Belghith, A. (2009) ‘Towards a distributed
Arabic OCR based on the DTW algorithm: performance
analysis’, International Arab Journal of Information
Technology, Vol. 6, No. 2, pp.153–161.

Khemakhem, M., Belghith, A. and Labidi, M. (2007) ‘The DTW
data distribution over a grid computing architecture’,
International Journal of Computer Sciences and Engineering
Systems, Vol. 1, No. 4, pp.241–247.

Kosar, T. and Livny, M. (2004) ‘Stork: making data placement a
first class citizen in the grid’, 24th International Conference
on Distributed Computing Systems, Proceedings, pp.342–349,
DOI: 10.1109/ICDCS.2004.1281599.

Labidi, M., Jemni, M. and Khemakhem, M. (2017) ‘Co-scheduling
data and task for a data-driven distribution of data-intensive
applications’, in AICCSA, IEEE Computer Society,
pp.407–414.

Labidi, M., Tang, B., Fedak, G., Khemakhem, M. and Jemni, M.
(2012) ‘Scheduling data on data-driven master/worker
platform’, in Shen, H., Sang, Y., Li, Y., Qian, D. and
Zomaya, A.Y. (Ed.): PDCAT, IEEE, pp.593–598.

Makatun, D., Lauret, J., Rudovà, H. and Sumbera, M. (2015)
‘Planning for distributed workflows: constraint-based
coscheduling of computational jobs and data placement in
distributed environments’, Journal of Physics: Conference
Series, Vol. 608, p.012028, 10.1088/1742-6596/608/1/
012028A.

Rajasekar, A., Moore, R., Hou, C-Y., Lee, C.A., Marciano, R.,
de Torcy, A., Wan, M., Schroeder, W., Chen, S-Y.,
Gilbert, L., Tooby, P. and Zhu, B. (2010) iRODS Primer:
Integrated Rule-Oriented Data System, Synthesis Lectures on
Information Concepts, Retrieval, and Services, Morgan &
Claypool Publishers.

Romosan, A., Rotem, D., Shoshani, A. and Wright, D. (2005)
‘Co-scheduling of computation and data on computer
clusters’, in Frew, J. (Ed.): SSDBM, pp.103–112.

Saidala, R.K. and Devarakonda, N. (2018) ‘Chaotic tornadogenesis
optimization algorithm for data clustering problems’, IJSSCI,
Vol. 10, No. 1, pp.38–64.

Smith, R. (2007) ‘An overview of the Tesseract OCR engine’, in
ICDAR, IEEE Computer Society, pp.629–633.

Wu, J., Guo, S., Huang, H., Liu, W. and Xiang, Y. (2018)
Information and Communications Technologies for
Sustainable Development Goals: State-of-the-Art, Needs and
Perspectives, DOI: CoRR abs/1802.09345.

Wu, J., Guo, S., Li, J. and Zeng, D. (2016a) ‘Big data meet green
challenges: big data toward green applications’, IEEE Systems
Journal, Vol. 10, No. 3, pp.888–900.

Wu, J., Guo, S., Li, J. and Zeng, D. (2016b) ‘Big data meet green
challenges: greening big data’, IEEE Systems Journal,
Vol. 10, No. 3, pp.873–887.

