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Abstract: Big data have brought in an era of data exploration and utilisation with MapReduce 
computational paradigm as its major enabler. Though great efforts through the implementation of 
Hadoop have made computation scale to tens of thousands of commodity cluster processors, the 
centralised architecture of resource manager has adversely affected response time in large data 
centres. The developed model decouples the responsibilities of resource manager by providing 
another layer where each daemon called rack unit resource manager (RU_RM) carries out the 
responsibility of allocating resources to compute nodes within its local rack to ensure low latency 
for large files. The application was developed and tested with Hadoop workload benchmarks 
used for analysis. Two performance evaluation metrics (efficiency and average task-delay ratio) 
were used for comparison. Efficiency quantifies average cluster utilisation while average  
task-delay ratio measures average delay time. Results obtained showed that as file size increases, 
the developed model outperforms the existing framework. 
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1 Introduction 

The growing popularity of cloud computing and advances in 
information and communication technology (ICT) have led 
to a continuous increase in the volume of data and its 
computational capacity has generated an overwhelming 
flow of data now referred to as big data (Sergio, 2015). 
These ever-increasing data pools have a profound impact 
not only on hardware storage requirements and user 
applications but also on the file system design, 
implementation and the actual I/O performance and 
scalability behaviour of today’s IT environment (Wu et al., 
2006). To improve I/O performance and scalability 
therefore, the obvious answer is to provide a means such 
that users can read/write from/to multiple disks (Dominique, 
2015). Today’s huge and complex semi-structured or 
unstructured data such as graph analytics, which have 
gained rapid application in e-commerce, social networks 
and recommendation systems (Fu et al., 2019) and smart 
health monitoring system, which has improved quality of 
healthcare services (Aboudi and Benhlima, 2017) are 
difficult to manage using traditional technologies like 
relational database management system (RDBMS) hence, 
the introduction of Hadoop distributed file system (HDFS) 
and MapReduce framework in Hadoop. Hadoop is a 
distributed data storage/data processing framework (Vinod 
et al., 2013). Hadoop was designed to process efficiently, 
large data volumes by linking many commodity systems so 
that they can work as a parallel entity (Vinod et al., 2013). 
The framework was designed basically to provide reliable, 
shared storage and analysis infrastructure to the user 
community. Hadoop has two components – HDFS 
(Konstantin et al., 2010) and the MapReduce framework 
(Dean and Ghemawat, 2004). The storage portion of the 
framework is provided by HDFS while the analysis 
functionality is provided by MapReduce (Konstantin et al., 
2010; Dean and Ghemawat, 2004). Other components also 
constitute Hadoop solution suite. 

The first generation Hadoop called Hadoop_v1 was an 
open-source of MapReduce (Bialecki et al., 2005). It has a 
centralised component called JobTracker that plays the role 
of both resource management and task scheduling.  
With Hadoop_v1, scalability beyond 4,000 nodes was not 
possible looking at the centralised responsibility of 
JobTracker/TaskTracker architecture (Vinod et al., 2013). 
To overcome this bottleneck and to promote this 
programming framework so that it carries other standard 
programming models and not just implementation of  
 
 

MapReduce, the Apache Hadoop community developed the 
next generation Hadoop called yet another resource 
negotiator (YARN) (Vinod et al., 2013). This newer version 
of Hadoop called YARN decouples resource management 
infrastructure from JobTracker in Hadoop_v1. Hadoop 
YARN introduced a centralised resource manager (RM) that 
monitors and allocates resources (Vinod et al., 2013). 

RM exposes two public interfaces and one internal 
interface (Vinod et al., 2013). The public interfaces are 
client submitting applications and application master (AM) 
dynamically negotiating access to resources. The internal 
interface is towards the node manager’s (NMs) ability for 
cluster monitoring and resource access management (Vinod 
et al., 2013). For this work, the focus is on public interfaces 
as it best explains an important frontier between YARN 
platform and various applications/frameworks running on it. 
RM is a global model of cluster state against the digest of 
resource requirements reported by running applications. 
AMs codify their need for resources by making one or more  
resource-requests each of which track the number of 
containers (e.g., 200 containers), resource per container  
(4 GB, 2 CPU), locality preference and priority of  
requests within the application (Apache Hadoop, 2018).  
Resource-requests are designed in a way that captures the 
full detail of users’ needs and/or a roll-up version of it. RM 
responds to AM request by generating containers together 
with tokens that grant access to resources (Apache Hadoop, 
2018). Once an application completes its execution, RM 
forwards an exit status of finished containers as reported by 
NMs to the corresponding AMs (Apache Hadoop, 2018). 
Looking at the responsibilities of RM, it is important to 
point out that RM is not responsible for coordinating 
application execution or task fault tolerance. It does not 
provide status or metrics for running applications (now part 
of AM) and it does not serve framework-specific reports  
of completed jobs (now delegated to a per-framework 
daemon). RM only handles live resource scheduling of 
applications with the heartbeat communication from AMs 
and NMs in the cluster. However, for a greater number of 
commodity servers and applications demand, response time 
from the global model of RM will be slow. It is, therefore, 
necessary to provide a per-rack RM to handle all 
request/communication for NMs and AMs within the local 
rack with the global RM only assigning application 
demands to each of the rack unit resource manager 
(RU_RM) and monitoring the liveliness of each of these 
units. 

The research objectives are: 
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1 To parallelise the global control of the RM in YARN 
framework by providing another layer called rack unit 
resource manager (RU_RM) layer. This will allow 
compute nodes on each rack to be controlled by their 
corresponding rack unit RM instead of a single RM 
controlling all the compute nodes in the cluster. 

2 Carry out a performance evaluation between the 
developed model and YARN using yarn scheduler load 
simulator (SLS). 

Though the simulator is for testing scheduler performance, 
it exercises the real YARN RM by simulating NMs and 
AMs through handling and dispatching NM/app masters 
heartbeat events within the same JVM. The work will alter 
the architecture of the simulator to accommodate several 
RMs which can be used at the rack unit RM layer of the 
developed model. NMs/app masters together with their 
schedulers will be re-usable components and will not be  
re-designed. 

2 Related work 

Big data has been a challenge for over four decades, with 
the term changing with advances in information technology. 
In the ‘70s, data sizes in megabytes were referred to as 
‘big’. At a point, data size grew and was measured in 
gigabytes, then terabytes and petabytes. Today, big data are 
in zettabytes and yottabytes (Vinayak et al., 2012). 
Multicore systems were among the early attempts to solve 
the problem of big data. Machines were made to have 
dozens of processing cores but with only one disk 
(Bekkerman et al., 2011). Multicore with their multithread 
operating systems allows a task to be broken down into 
smaller units called threads. Threads are then executed 
concurrently on different CPU cores of the machine 
(Dilpreet and Chandan, 2014). Peer-to-peer architecture was 
another approach introduced to overcome the problem of 
massive data (Steinmetz and Wehrles, 2005). Machines 
were connected in a decentralised and distributed manner 
with message passing interface (MPI) serving as a 
connection protocol within peers (Ripeanu, 2001). With the 
growing popularity of cloud computing and continuous 
increase in the volume of data, multicore and peer-to-peer 
systems became unsuitable for dynamic computations over 
large amounts of data. The computational capacity today 
has exceeded the capabilities of conventional processing 
tools hence, the era of Google file system and MapReduce 
by Google; and subsequently, the release of classic Hadoop. 

Some systems have recognised limitations in Hadoop 
architecture and have provided alternative models to these 
limitations. Some of the efforts which closely resemble 
YARN are COSMOS (Chaiken et al., 2008), Mesos 
(Hindman et al., 2011), Corona (Facebook, 2012) and 
Omega (Schwarzkopf et al., 2013) for Microsoft, Twitter, 
Facebook, and Google respectively. Though these systems 
share a common inspiration of high-level goals of 
improving scalability, latency and programming model 
flexibility, they all have their architectural differences. 

These differences are most times in diverse design priorities 
and historical contexts. 

COSMOS architectural framework closely resembles 
that of YARN. The main objective of the framework is to 
offer availability, reliability, scalability, and performance 
through its three basic components – COSMOS storage, 
COSMOS environment, and structured computations 
optimised for parallel execution (SCOPE). The framework 
has a job manager (JM), which is the runtime component of 
the execution engine. It is a central and coordinating 
daemon for all processing vertices with the application 
(Chaiken et al., 2008). With multiple applications/ 
frameworks, COSMOS framework will find it significantly 
difficult to handle jobs. Mesos architectural design 
implements an offered-based RM (Hindman et al., 2011), 
while YARN has a request-based RM (Vinod et al., 2013). 
Mesos leverages a pool of central schedulers just like the 
type obtained in classic Hadoop (Zikopoulos and Eaton, 
2011) but, YARN uses a per-job intra-framework scheduler 
which allows AM to request for resources depending on the 
criteria which includes location, CPU and memory demand 
(Vinod et al., 2013). Corona is an open-source scheduling 
framework with a cluster manager responsible for tracking 
of nodes and free resources in the cluster (Shouvik and 
Daniel, 2013). Each job has a dedicated JobTracker in this 
framework. The cluster manager only needs to push 
resource grants to JabTracker upon request for task 
execution (Shouvik and Daniel, 2013). The approach used 
by Corona is a push-based approach, which is different from 
the heartbeat-based control-plane framework approach in 
YARN and other frameworks. Though latency/scalability 
trade-off of these two frameworks deserves a detailed 
comparison, heartbeat communication protocol negotiates 
and monitors the availability of a resource in a cluster. It is 
intended to indicate the health of a machine hence; 
consideration between overload in YARN due to constant 
heartbeat between RM and other components and efficient 
fault tolerance in Corona since it is push-based will have to 
be looked at. Corona framework also is not very efficient 
for multiple applications when compared to the Hadoop 
YARN ecosystem. Omega architectural design geared 
towards distributed, multi-level scheduling which reflects a 
greater focus on scalability. It is, however hard to enforce 
global properties such as capacity/fairness/deadlines on this 
system (Schwarzkopf et al., 2013). 

Other resource allocation systems that attempt to place 
jobs for optimal performance in big data clusters are 
Firmament (Gog et al., 2016), h-drf (Bhattacharya et al., 
2013), Sparrow (Outerhout et al., 2013), Matrix (Wang et 
al., 2013), Mercury (Konstantinos et al., 2015), Quarsar 
(Delimitrou and Kozyrakis, 2014), Awan (Albert et al., 
2016) and Justice (Dimopoulos et al., 2017). Most of these 
systems provide efficient scheduling algorithms but still 
maintain a single RM in the cluster, which is a bottleneck 
for scalability (ability to scale-up cluster). Firmament 
architectural design still maintains a centralised scheduler 
that can make high-quality placement when scheduling 
tasks in cluster by continuously rescheduling all tasks 
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through a min-cost max-flow (MCMF) optimisation. The 
system was tested using Google workload trace from  
12,500 machines and it showed improved placement latency 
by 20× over Quincy (Gog et al., 2016). Firmament still 
maintains a central scheduler as YARN model. With 
increase applications/jobs requesting resources, a single 
resource allocator will be overwhelmed. H-drf proposed by 
Bhattacharya et al. (2013) is a hierarchical scheduling 
system for diverse datacentre workloads in Hadoop. 
Bhattacharya et al. (2013) maintained that most datacentres 
exhibit diverse workload with mixed jobs which are 
sometimes CPU-intensive, memory-intensive or I/O 
intensive. The system, therefore, uses dominant resource 
fairness (drf) for job placement. This is a good approach 
since jobs are allocated based on the type of resources they 
need. The system, however, did not take into consideration 
data locality. Outerhout et al. (2013) proposed a distributed, 
low latency scheduling framework that demonstrates  
a decentralised, randomised sampling approach for  
near-optimal performance while avoiding throughput and 
availability limitations of centralised design. Outerhout  
et al. (2013) presented sparrow; a stateless distributed 
scheduler that adapts the power of two choices load 
balancing technique to the domain of parallel task 
scheduling. The choices require scheduling each task by 
probing two random servers and placing the task on the 
server that is less busy or has fewer queued tasks (Outerhout 
et al., 2013). Sparrow focused mainly on fine-grained task 
scheduling for low latency applications. The framework 
provides task scheduling which is complementary to the 
functionality provided by cluster managers. Instead of 
launching a new task, the framework assumes that a  
long-running execution process is already running on each 
compute node for each framework hence; it only sends a 
short task description when a task is launched (Outerhout  
et al., 2013). The framework makes approximations when 
scheduling tasks thereby trading off many of the complex 
features supported by a sophisticated, centralised scheduler 
to provide higher scheduling throughput and lower latency. 
This framework does not support gang scheduling typically 
implemented by bin packing algorithm which searches for 
reserved time splits on which an entire job can be run. 
Because Sparrow queues tasks on several machines, it lacks 
a central point from which to perform bin packing hence, 
deadlocks between multiple tasks that require gang 
scheduling may occur. Currently, this framework only 
supports FIFO order, adding other query-level scheduling 
policies may improve end-to-end query performance of the 
framework. It is also important that when a compute node 
fails, all schedulers with outstanding requests at that node 
be informed. A centralised state that relies on heartbeat 
protocol to maintain a list of nodes that are alive may be 
needed in this framework. Wang et al. (2013) proposed a 
task execution framework called matrix to overcome 
Hadoop scaling limitations through distributed task 
execution. Though matrix was originally developed to 
schedule executions of data-intensive scientific applications 
of many-task computing on supercomputers, Wang et al. 

(2013) saw the need to use the same framework to address 
scalability issues of Hadoop through decentralising the 
responsibility of RM. The framework is fully distributed by 
delegating one scheduler on each compute node (Wang  
et al., 2013). For each compute node, there is an executor 
and a key-value store (KVS) server. The scheduler on each 
of these nodes has the responsibility of managing local 
resources for optimising load balancing and data-locality 
(Wang et al., 2013). From the architecture of matrix, it is 
clear that the framework has a per-node RM (each scheduler 
maintains a local view of the resources on an individual 
node). For any framework to have a per-node RM, all data 
blocks for a single file must be resident on that compute 
node. Konstantinos et al. (2015) proposed Mercury; a 
hybrid resource management framework that supports 
centralised to distributed scheduling on large shared 
clusters. The placement policy is such that whenever a 
distributed scheduler needs to place a task on a node, it 
picks among k nodes with the smallest estimated queuing 
delay. This allows for optimal performance and improved 
task throughput (Konstantinos et al., 2015). Data are broken 
down into blocks and store on several worker nodes in 
Hadoop cluster. How Mercury ensures central coordination 
of each of for a single application needs to be looked at. 
Delimitrou and Kozyrakis (2014) introduced Quasar;  
a resource-efficient and QoS-aware cluster management 
system. The sole aim of this system is to provide increase 
resource utilisation for consistently high application 
performance (Delimitrou and Kozyrakis, 2014). The system 
still maintains a single resource allocator which is a 
bottleneck for scalability. Albert et al. (2016) proposed a 
framework called Awan; a RM that helps share computing 
resources across multiple frameworks in an edge cloud 
environment. The main goal of this system is to provide a 
general resource management mechanism that will allow 
each framework to schedule its job with high locality in a 
geo-distributed environment. To achieve this goal, Awan 
implements a resource lease abstraction to allocate 
resources to individual framework schedulers. These 
schedulers can, in turn, make better scheduling decisions by 
considering the availability of desirable local resources 
(Albert et al., 2016). In an attempt to provide a shared-state 
mechanism where all framework schedulers have global 
knowledge of all resources in the cluster (both available and 
non-available resources), resource lease conflicts are bound 
to occur between schedulers in Awan. Though a mechanism 
is in place to resolve these conflicts by RM in Awan, an 
extra overhead will frequently be incurred in running 
applications in this framework. Justice proposed by 
Dimopoulos et al. (2017) is a deadline-aware resource 
allocator that uses deadline information supplied with each 
job and historical job evaluation logs to implement job 
placement. The system, however, does not consider jobs 
without a deadline or job that will not be able to meet the 
deadline due to resource allocator failure. Panda and Naik 
(2018) proposed an efficient data replication algorithm for a 
distributed system. The primary focus of their work is on 
the redundancy of data at two or more nodes to achieve fault 
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tolerance and improve cluster performance (Panda and 
Naik, 2018). The algorithm, called dynamic vote-based data 
replication (DVDR) is based on dynamic vote assignment 
among connected nodes which consider all types of faults 
and re-join failed nodes (Panda and Naik, 2018). Yassir  
et al. (2019) proposed a related work which is an algorithm 
that minimises big data movement in a cloud environment. 
The work focussed on data placement strategies to improve 
the overall performance of a cluster. Yassir et al. (2019) 
opined that better data placement and reduction in 
movement of data through identification of datasets, 
estimation of load threshold base on processing speed and 
storage capacity improved overall performance of the 
cluster. Since data nodes in Hadoop cluster are arranged in 
racks, careful data placement in these racks to minimise 
data movement as opined by Yassir et al. (2019) and DVDR 
by Panda and Naik (2018) need to be looked at for effective 
replication of data across racks to avoid cross-rack data 
communication. 

YARN framework stands out among most of the big 
data analytics due to its ability to run several other 
frameworks/applications in the cluster. So many other 
commercial big data analytic frameworks can run on 
Hadoop YARN which makes it more robust and widely 
used. Since many other big data analytic tools run on 
Hadoop YARN, a greater number of application demands is 
therefore needed which leads to higher resource request 
from AM in the cluster and worker nodes monitoring 
through heartbeat communication via NM in each of these 
worker nodes. The responsibility of a single RM to handle 

all resource requests from AM and worker node status via 
NM will constitute a bottleneck for the scalability of 
Hadoop. This paper aims to parallelise the responsibility of 
the global RM in YARN by having another layer called rack 
unit resource managers (RU_RM) responsible for resource 
management of nodes in their corresponding rack. 

3 Architecture of YARN framework 

Hadoop YARN has a centralised RM as shown in Figure 1. 
Though this architectural design has improved scalability 
significantly, there are fundamental design issues that cap 
the scalability of this framework towards extreme scales. 
Some of these design issues include: 

1 Centralised RM: RM, which is the core component of 
the Hadoop framework, offers the functionalities of 
managing, provisioning and monitoring resources like 
the CPU, memory and network bandwidth of compute 
nodes. These responsibilities obviously, are bottlenecks 
for the scalability of Hadoop towards extreme scales.  
It slows down execution since all compute nodes 
send/receive instructions from a single RM through 
heartbeat protocol. Once the RM fails, all execution 
will halt. Although YARN provides RM high 
availability to protect against a single point of failure, 
this technique causes computation overhead because 
the RM needs to update the backup storage frequently. 

 

Figure 1 Hadoop YARN architecture (see online version for colours) 

 

Source: Apache Hadoop (2018) 
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2 Hadoop replication factor: the replication factor in 
Hadoop framework is such that 2/3 of each block (of a 
whole file) is replicated into different data nodes across 
racks in a cluster. Since AM is expected to monitor  
the execution of a job/application (with its complete 
number of blocks) in a cluster, AM will need to 
communicate data nodes with input splits of the 
corresponding job/application across racks to be able to 
monitor this execution. Communication across racks 
will results in higher latency for job execution. 

3 Job completion time: since only RM coordinates the 
release of resources for execution of jobs, several AMs 
polling from RM of this framework during resource 
request is a bottleneck for the system. It slows down 
processing, which means that total turnaround time  
(job completion time) for each job will be high. 

4 Architecture of the developed model 

The architecture of the developed model is shown in  
Figure 2. The main aim of this model is to parallelise the 
global control of the RM in YARN framework by providing 
another layer called rack unit resource manager (RU_RM) 

layer. This layer aims to make compute nodes on each rack 
to be controlled by their corresponding rack unit RM instead 
of a single RM controlling all the compute nodes in the 
network. We believe that this will help improve response 
and turnaround time for each job/application and will 
eliminate single point of failure which makes jobs halt in 
the existing model. 

Central RM obtains information on which rack contains  
2/3 of the total number of blocks for each job from the name 
node and pushes a job to the corresponding RU_RM. 
RU_RM decides on resource lease requests from the AM in 
the rack. 

5 Hypothetical test 

To justify the working methodology of the developed 
model, a hypothetical evaluation is carried out to analyse 
task response time for both the developed and existing 
YARN models. With another level of abstraction introduced 
below the global RM, this test is needed to determine task 
response time at both central RM and rack unit RM layer of 
the developed model compare to task response time at the 
global RM in YARN model. 

Figure 2 Architecture of the developed model (see online version for colours) 
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Let us assume to have three jobs (applications) to be 
processed and that, each instruction cycle in executing any 
of these jobs takes 0.01ns (assume that three jobs are of the 
same size). For each job, therefore, the first five instruction 
cycles in the existing framework will be 0.05ns (as obtained 
from Algorithm 1). Since there is only one RM, the last  
six instructions will require RM communicating with NM to 
launch containers and with AM for resource requests. Since 
no more than one instruction can be given at a time, it 
means that RM will interleave these instructions between 
the three jobs (applications). Assume by intuition, that 
resource lease from RM to AM takes 3 ns and the 
interleaving of processes follows FIFO order. It means that 
Job 1 gets resources immediately hence, the delay time is 
zero (0). Job 2 will get access to a resource at time 3 ns 
while Job 3 at time 6 ns. The overall time it will take to 
process the three jobs will be as follows: 

1 (0.01 5) 0 0.05Job ns ns ns     

2 (0.01 5) 3 3.05Job ns ns ns     

3 (0.01 5) 6 6.05Job ns ns ns     

Total task response time needed to process the  
three jobs = 9.15 ns. 

Algorithm 1 Job execution in YARN 

a. Job submission phase 

 Step 1: The job gets submitted to the job client. 

 Step 2:  The job client request for a new job id. 

 Step 3: The job client then checks if the output 
directory has been created. After verifying 
this, it copies the job resources to the HDFS. 

 Step 4:  The job client then submits the job to the 
resource manager. 

b. Job initialisation phase 

 Remember that, resource manager has two units – 
resource scheduler and application manager. The 
scheduler schedules and allocates resources while 
application manager monitors the status and process of 
the job. 

 Step 5:  As soon as the scheduler picks a job, it 
contacts the node manager to allocate a 
container and launch application master 
for the job. 

 Step 6:  Application master creates an object for 
the job. This is done for bookkeeping 
purposes and task management. 

 Step 7:  The application master retrieves input 
splits from HDFS and creates 1 map per 
split. The application master at this point 
decides how to execute the job. If the job is 
a small task, the application master runs 
the job in its JVM to avoid unnecessary 
overhead. These types of tasks are called 
Uber tasks in Hadoop framework. 

c. Task assignment phase 

 Step 8: If the job is large, the application master 
requests the resource manager to allocate the 

computing resources needed. Scheduler at 
this point knows where the resources are 
located. It gathers this information from the 
heartbeat it gets from each worker node. It 
uses this information to consider data locality 
while assigning a task. The scheduler tries as 
much as possible to assign a task to where the 
data are located. If this is not possible, it 
assigns the task to another node within the 
cluster. 

d. Task execution phase 

 Step 9:  Application master contacts the node 
manager assigned to execute the task, to start 
a container. The node manager then launches 
the YARN child. 

  YARN child is a Java program that has the 
main class ‘YarnChild’. It runs a separate 
JVM to isolate user code from a long-running 
system. 

 Step 10: YarnChild retrieves all job resources from the 
HDFS. 

 Step 11: YarnChild now runs the map and reduce 
tasks. 

e. Progress and update phase 

 In this phase, YarnChild sends the progress report every 
3 seconds to the application master. Application master 
in turn aggregates and sends an update directly to the 
job client. 

f. Job completion phase 

 Application master and task containers clean up their 
working state. 

With the developed model, the first seven instruction cycles 
will be 0.07 ns (as obtained in Algorithm 2). Since each 
RU_RM node executes just one job at a time, the last  
six instructions therefore are carried out at the same time on 
different RU_RM node. Therefore, if it takes 3 ns for 
resource lease in the existing system; it will take 1/3 ns of  
5 steps for resource lease in the new model. Hence, the 
process time for the three jobs will be as follows: 

1 (0.01 7) 1 3 5 _ 1

0.07 1.67 1.74

Job ns ns of on RU RM

ns ns ns

  
  

 

2 (0.01 7) 1 3 5 _ 2

0.07 1.67 1.74

Job ns ns of on RU RM

ns ns ns

  
  

 

3 (0.01 7) 1 3 5 _ 3

0.07 1.67 1.74

Job ns ns of on RU RM

ns ns ns

  
  

 

Total task response time needed to process these  
three jobs = 5.22 ns. 

Algorithm 2 Job execution in the developed model 

a. Job submission phase 

 Step 1: The job gets submitted to the job client. 

 Step 2:  The job client request for a new job id. 

 Step 3: The job client then checks if the output 
directory has been created. After verifying 
this, it copies the job resources to the HDFS. 
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 Step 4:  The job client then submits the job to 
the resource manager. 

b. Job initialisation phase 

 Step 5:  Resource manager gets input splits for 
the said job. 

 Step 6:  With the information in Step 5,  
the resource manager schedules 
appropriate rack unit resource 
manager (RU_RM) with 2/3 of the 
input split to execute the job. 

 Step 7:  The scheduler at the RU_RM picks the 
job and contacts the appropriate node 
manager to launch application master 
for the job. 

 Step 8: Application master creates an object for the 
job. This is done for bookkeeping purposes 
and task management. The application master 
creates 1 map per split from each input split 
on the data node. The application master at 
this point decides how to execute the job. If 
the job is a small task, the application master 
runs the job in its JVM to avoid unnecessary 
overhead. 

c. Task assignment phase 

 Step 9: If the job is large, the application master 
requests the rack unit resource manager to 
allocate the computing resources needed 
(container). Scheduler at this point knows 
where the resources are located. It gathers 
this information from the heartbeat it gets 
from each worker node in the rack. It uses 
this information to consider data locality 
while assigning a task. The scheduler tries as 
much as possible to assign a task to where the 
data are located. If this is not possible, it 
assigns the task to another node within the 
rack. 

d. Task execution phase 

 Step 10:  The rack unit resource manager through the 
appropriate node manager launches the 
YARN child. 

 Step 11:  YarnChild retrieves all job resources from the 
HDFS. 

   

 Step 12:  YarnChild now runs the map and reduce 
tasks. 

e. Progress and update phase 

 In this phase, YarnChild sends the progress report every  
3 seconds to the application master. Application master 
in turn aggregates and sends an update directly to the 
job client. 

f. Job completion phase 

 Application master and task containers clean up their 
working state. 

6 Experimental setup and results 

This section evaluates the developed model by comparing it 
with the existing model in processing typical Hadoop 
workloads like sort, WordCount, TeraSort, PageRank,  

naïve Bayes, and K-means. The experimental cluster for  
this evaluation consists of four systems. One of these  
four systems is designed to be both master and a slave node 
while the other three are slave nodes. We have four nodes 
with each node interconnected by 10 G-Ethernet. Each node 
has two Intel Xeon CPU E5-2670 running at 2.60 GHz.  
Each CPU has eight cores (each core has two threads:  
hyper-threading). The memory size for each node is 64 GB. 
CentOS 6.7 operating system and Java 1.8.0 were used for 
the cluster. YARN SLS’s architecture was altered to 
accommodate several RMs used as rack unit RMs for the 
developed model. NMs and AMs together with their 
schedulers were re-usable components for the developed 
model. We set HDFS block replication to be 3 and block 
size to 128 MB. 

6.1 Definition of metrics 

We define two metrics to evaluate the performance  
of YARN and improved YARN. The two metrics are 
efficiency and average-delay ratio. 

6.1.1 Efficiency 

Efficiency in this work represents the percentage of the total 
ideal finished time (Total-Tideal) to the actual finished time 
(Tactual) of a task. Tideal is run time obtained by running a 
single data block (without overheads). A single data block 
was set as an Uber task, which was processed by AM in its 
JVM to avoid unnecessary overhead. Tactual is the total 
running time (with overheads) obtained by executing 
workloads on existing and developed models. 

This metric helps quantify the average cluster utilisation 
of the developed and existing model. This is represented by 
equation (1). 

 *100%ideal actualEfficiency Total T T   (1) 

*
ideal

ideal

Total T number of blocks for each dataset

T

 
 (2) 

6.1.2 Average task-delay ratio 

Average task-delay ratio (rtd) for this work is computed as 
the normalised difference between ideal task finished time 
(Titf) and average actual task finished time (Tatf). 

This metric measures how fast the models can respond 
from a task’s perspective. This is represented by equation 
(3). 

 td atf itf itfr T T T   (3) 

where 

atf actualT T number of blocks  (4) 

itf idealT T  (5) 
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6.2 Benchmarks 

We use six benchmarks to compare our results. The 
benchmarks are sort, WordCount, TeraSort, PageRank, 
naïve Bayes, and K-means. Sort workload is used to sort 
input text files by key. WordCount reads a text file and 
count the number of occurrences of each word. TeraSort has 
three applications – TeraGen used to generate input data, 
TeraSort for sorting input data and TeraValidate for 
checking the output. PageRank ranks web pages in its 
search engines. Naïve Bayes is a machine learning 
benchmark based on Bayes’ theorem with independence 
assumptions between features to categorise text. K-means is 
used to group items into k clusters (Huang et al., 2011). 

These six benchmarks cover HiBench benchmark suites 
– micro benchmark (sort, WordCount, and TeraSort), web 
search (PageRank) and machine learning (naïve Bayes and 
K-means clustering). We use the Hadoop benchmark and 
data generator provided in HiBench benchmark suite 4.0 
from https://github.com/intel-hadoop/HiBench. 

6.3 Results and analysis 

We present the results of experiments and analysis for 
benchmarks described above. To compare the performance 
of the developed and existing models, we record the running 
time for each workload operation. The running time was 
recorded in seconds. 

6.3.1 Sort 

Table 1 represents running time (Tactual) performance 
comparison for sort on YARN and improved YARN model. 

Table 1 Sort running time (seconds) 

Input 4 GB 8 GB 16 GB 32 GB 64 GB 

YARN 54 107 194 589 1,947 

Improved 
YARN 

51 99 173 402 1,025 

Figure 3 Efficiency from running sort workload (see online 
version for colours) 

 

The input sizes for these datasets range from 4 GB to  
64 GB. To obtain ideal runtime (Tideal) for this workload, we 
ran a single block size of 128 MB which gave an average  

of 1.3 seconds after three attempts. Efficiency and  
average-delay ratio were calculated from equations (1)  
and (3) for both YARN and improved YARN models with 
the chart represented in Figures 3 and 4 respectively. 

Figure 4 Average-task delay ratio from running sort workload 
(see online version for colours) 

 

From Figure 3, improved YARN outperformed the existing 
YARN model with efficiency 2× better when input size 
increased to 64 GB. Also, the average-task delay as shown 
in Figure 4 for the developed model is closely 3× less than 
the existing model, which also reflected in the overall 
performance. Both YARN and improved YARN performed 
poorly as input size increase. This may be as a result of the 
number of nodes, memory sizes and processor speeds of the 
nodes used for the experiment. 

6.3.2 WordCount 

Running time for YARN and improved YARN on 
WordCount workload is as presented in Table 2. 

Table 2 WordCount running time (seconds) 

Input 4 GB 8 GB 16 GB 32 GB 64 GB 

YARN 267 509 982 2,023 4,078 

Improved 
YARN 

235 413 822 1,649 3,309 

The input sizes for these datasets range from 4 GB to  
64 GB. To obtain Tideal, we ran a single block size of  
128 MB which gave an average of 6.2 seconds after  
three attempts. Efficiency and average-delay ratio were 
calculated from equations (1) and (3) for both YARN and 
improved YARN models with the chart represented in 
Figures 5 and 6 respectively. 

From Figure 5, we see that improved YARN 
outperformed YARN. As the input dataset increases from 
16 GB to 64 GB, YARN’s efficiency drops by 3% while 
improved YARN maintained a nearly consistent 
performance dropping by less than 1%. The results show 
that improved YARN is more scalable than YARN in the 
presence of an increased workload. This is largely due to the 
distributed architecture in the rack unit RM layer. The 
average-task delay ratio shows a consistent delay for 
improved YARN while task-delay in YARN has a 
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continuous increase in time as the input dataset increases, 
yielding poor efficiency on cluster utilisation. This is due to 
all task pulling resource requests from a single RM. 

Figure 5 Efficiency from running WordCount workload  
(see online version for colours) 

 

Figure 6 Average-task delay ratio from running WordCount 
workload (see online version for colours) 

 

6.3.3 TeraSort 

We ran a TeraSort test for assessing YARN and improved 
YARN performance using input datasets of sizes ranging 
from 8 GB to 128 GB. First, we generate these data using 
TeraGen and then used TeraSort to sort the data. Finally, we 
validate the sorted results using TeraValidate. Table 3 
shows the runtime (Tactual) performance of TeraSort from 
each input size. 

Table 3 TeraSort running time (seconds) 

Input 8 GB 16 GB 32 GB 64 GB 128 GB 

YARN 85 156 572 1,219 3,334 

Improved 
YARN 

84 151 566 1,134 3,013 

We ran a single block comprising 128 MB with  
three iterations. The average ideal runtime (Tideal) obtained 
for a single block was 1.1 seconds. Figures 7 and 8 show the 
efficiency and average-task delay ratio for both YARN and 
improved YARN models. 

 

Figure 7 Efficiency from running TeraSort workload (see online 
version for colours) 

 

Figure 8 Average-task delay ratio from running TeraSort 
workload (see online version for colours) 

 

We observed that YARN achieved performance close to 
improved YARN. However, there is still a significant 
difference with improved YARN outperforming YARN as 
input datasets increases. Also, task delay for both models 
dropped between input data sizes of 16 GB and 64 GB with 
a significant rise in the existing model when input data size 
increased to 128 GB. This significant increase shows that 
with more datasets, improved YARN will be more scalable 
than YARN. 

6.3.4 PageRank 

Table 4 represents runtime performance comparison for 
PageRank on YARN and improved YARN. 

Table 4 PageRank running time (seconds) 

Input 2 M 4 M 8 M 16 M 30 M 

YARN 405 715 1,401 2,852 5,562 

Improved 
YARN 

396 675 1,297 2,614 5,001 

The input datasets for this experiment as shown in Table 4 
ranges from 2 million pages to 30 million pages. The sizes 
of these input datasets are from 1.3 GB to 19.7 GB. To 
obtain ideal runtime for this workload, we ran a single  
block which is approximately 200 thousand pages  
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with three iterations. Average ideal runtime (Tideal) of  
30.1 seconds was obtained. Efficiency and average-task 
delay ratio for both existing and developed models are 
shown in Figures 9 and 10. 

Figure 9 Efficiency from PageRank workload (see online 
version for colours) 

 

Figure 10 Average-task delay ratio from PageRank workload  
(see online version for colours) 

 

Input datasets of 2 M and 4 M show no significant 
differences in the efficiency of YARN and improved YARN 
model. With an increase in input datasets, however, 
improved YARN performed better than YARN. With an 
increase in input datasets also, task delay for improved 
YARN is 2× less compared to delay on the YARN model. 
This is largely due to multiple RMs at rack unit RM layer of 
improved YARN. 

6.3.5 Naïve Bayes 

Table 5 represents running time (Tactual) performance for 
naïve Bayes between YARN and improved YARN. 

Table 5 PageRank running time (seconds) 

Input 100 K 200 K 400 K 800 K 1.6 M 

YARN 636 1,289 2,475 4,789 12,725 

Improved 
YARN 

608 1,211 2,293 4,462 10,322 

 

The input datasets are from 100 thousand to 1.6 million 
which ranges from 0.45 GB to 7.5 GB. Ideal run time for a 
single block of approximately 25 k was 149 seconds. 
Figures 11 and 12 show the efficiency and average-task 
delay ratio for YARN and improved YARN. 

Figure 11 Efficiency from naïve Bayes workload (see online 
version for colours) 

 

Figure 12 Average-task delay ratio from naïve Bayes workload 
(see online version for colours) 

 

Improved YARN shows consistency in cluster utilisation 
only dropping by approximately 2% as input datasets get 
bigger. Though YARN also shows the same consistency, 
performance dropped significantly when the input dataset 
became 1.6 M. 

6.3.6 K-means 

Runtime performance for YARN and improved YARN 
using K-means workload is shown in Table 6. Input datasets 
for this experiment ranges from 50 M to 800 M records with 
sizes ranging from 10 GB to 160 GB. Figures 13 and 14 
show the efficiency and average-task delay ratio for YARN 
and improved YARN models. 

Table 6 K-means running time (seconds) 

Input 50 M 100 M 200 M 400 M 800 M 

YARN 334 656 1,357 2,755 6,553 

Improved 
YARN 

327 643 1,336 2,694 5,426 
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Figure 13 Efficiency from K-means workload (see online 
version for colours) 

 

Figure 14 Average-task delay ratio from K-means workload  
(see online version for colours) 

 

We ran this algorithm using five clusters and obtained an 
ideal runtime of 3.9 seconds for a single block of 
approximately 7 M input data size. YARN performed 
poorly as input datasets increases. Improved YARN shows a 
much slower decreasing trend and became stable from  
200 M to 800 M in terms of efficiency and average-task 
delay ratio. The increasing trend in YARN and much stable 
performance of improved YARN is likely to hold for more 
input datasets. The performance of improved YARN is in 
the distributed architecture of RMs in the cluster. 

7 Conclusions 

A model of improved scalable resource management system 
for Hadoop YARN is an improvement over the existing 
Hadoop YARN model. The finished time of workload 
operation in the log file for YARN and improved YARN 
was used as a basis for comparing the models. Results 
obtained from computation of efficiency and average  
task-delay ratio showed that as file size increases, improved 
YARN performs better than the existing YARN model. 
Since Hadoop framework is intended for massive data, it 
implies that improved YARN promises to proffer better 
resource management for a scalable Hadoop framework. 

Future work will look at providing efficient fault 
tolerance mechanisms at the Rack_Unit RM layer to prevent 
any fault that may lead to computation issues for data nodes 
on any of the rack. We will also look at how this solution 

can be implemented in other big data resource allocation 
systems. 
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