
Int. J. High Performance Computing and Networking, Vol. 16, No. 1, 2020 1

Copyright © 2020 Inderscience Enterprises Ltd.

A rack-aware scalable resource management system
for Hadoop YARN

Timothy Moses*
Department of Computer Science,
Federal University of Lafia,
Nasarawa State, Nigeria
Email: moses@fuwukari.edu.ng
*Corresponding author

Hyacinth C. Inyiama
Department of Electronic and Computer Engineering,
Nnamdi Azikiwe University,
Awka, Anambra State, Nigeria
Email: drinyiamahc@yahoo.com

Sylvanus O. Anigbogu
Department of Computer Science,
Nnamdi Azikiwe University,
Awka, Anambra State, Nigeria
Email: dranigbogu@yahoo.com

Abstract: Big data have brought in an era of data exploration and utilisation with MapReduce
computational paradigm as its major enabler. Though great efforts through the implementation of
Hadoop have made computation scale to tens of thousands of commodity cluster processors, the
centralised architecture of resource manager has adversely affected response time in large data
centres. The developed model decouples the responsibilities of resource manager by providing
another layer where each daemon called rack unit resource manager (RU_RM) carries out the
responsibility of allocating resources to compute nodes within its local rack to ensure low latency
for large files. The application was developed and tested with Hadoop workload benchmarks
used for analysis. Two performance evaluation metrics (efficiency and average task-delay ratio)
were used for comparison. Efficiency quantifies average cluster utilisation while average
task-delay ratio measures average delay time. Results obtained showed that as file size increases,
the developed model outperforms the existing framework.

Keywords: MapReduce; Hadoop; framework; scalable; rack-aware; resource manager; big data;
rack unit resource manager.

Reference to this paper should be made as follows: Moses, T., Inyiama, H.C. and
Anigbogu, S.O. (2020) ‘A rack-aware scalable resource management system for Hadoop
YARN’, Int. J. High Performance Computing and Networking, Vol. 16, No. 1, pp.1–13.

Biographical notes: Timothy Moses is currently a Lecturer at the Department of Computer
Science, Federal University of Lafia (FULAFIA). Prior to joining FULAFIA, he worked as
Senior System Analyst/Programmer, then Lecturer at the Department of Computer Science,
Federal University Wukari, Taraba State. His area of interest is distributed database management
and parallel computation. He has also picked keen interest in the area of educational technology.
He is a member of the Nigeria Computer Society.

Hyacinth C. Inyiama is a Professor of Computer and Control Engineering, Department of
Electronics and Computer Engineering, Nnamdi Azikiwe University Awka. His research interest
is in artificial intelligence and industrial automation. He has provided solutions to many industry
automation problems. He is currently on sabbatical at Baze University, Abuja – Nigeria. He is a
member of the Nigeria Computer Society and Computer Professionals (Registration Council of)
Nigeria.

2 T. Moses et al.

Sylvanus O. Anigbogu is a Professor of Computer Science, Department of Computer Science,
Nnamdi Azikiwe University Awka. He is currently the Dean, Faculty of Physical Sciences. His
research interest is in the areas of artificial intelligence, database design and management, cyber
security. He has published his work in several local and international journals. He is also a
member of the Nigeria Computer Society and Computer Professionals (Registration Council of)
Nigeria.

1 Introduction

The growing popularity of cloud computing and advances in
information and communication technology (ICT) have led
to a continuous increase in the volume of data and its
computational capacity has generated an overwhelming
flow of data now referred to as big data (Sergio, 2015).
These ever-increasing data pools have a profound impact
not only on hardware storage requirements and user
applications but also on the file system design,
implementation and the actual I/O performance and
scalability behaviour of today’s IT environment (Wu et al.,
2006). To improve I/O performance and scalability
therefore, the obvious answer is to provide a means such
that users can read/write from/to multiple disks (Dominique,
2015). Today’s huge and complex semi-structured or
unstructured data such as graph analytics, which have
gained rapid application in e-commerce, social networks
and recommendation systems (Fu et al., 2019) and smart
health monitoring system, which has improved quality of
healthcare services (Aboudi and Benhlima, 2017) are
difficult to manage using traditional technologies like
relational database management system (RDBMS) hence,
the introduction of Hadoop distributed file system (HDFS)
and MapReduce framework in Hadoop. Hadoop is a
distributed data storage/data processing framework (Vinod
et al., 2013). Hadoop was designed to process efficiently,
large data volumes by linking many commodity systems so
that they can work as a parallel entity (Vinod et al., 2013).
The framework was designed basically to provide reliable,
shared storage and analysis infrastructure to the user
community. Hadoop has two components – HDFS
(Konstantin et al., 2010) and the MapReduce framework
(Dean and Ghemawat, 2004). The storage portion of the
framework is provided by HDFS while the analysis
functionality is provided by MapReduce (Konstantin et al.,
2010; Dean and Ghemawat, 2004). Other components also
constitute Hadoop solution suite.

The first generation Hadoop called Hadoop_v1 was an
open-source of MapReduce (Bialecki et al., 2005). It has a
centralised component called JobTracker that plays the role
of both resource management and task scheduling.
With Hadoop_v1, scalability beyond 4,000 nodes was not
possible looking at the centralised responsibility of
JobTracker/TaskTracker architecture (Vinod et al., 2013).
To overcome this bottleneck and to promote this
programming framework so that it carries other standard
programming models and not just implementation of

MapReduce, the Apache Hadoop community developed the
next generation Hadoop called yet another resource
negotiator (YARN) (Vinod et al., 2013). This newer version
of Hadoop called YARN decouples resource management
infrastructure from JobTracker in Hadoop_v1. Hadoop
YARN introduced a centralised resource manager (RM) that
monitors and allocates resources (Vinod et al., 2013).

RM exposes two public interfaces and one internal
interface (Vinod et al., 2013). The public interfaces are
client submitting applications and application master (AM)
dynamically negotiating access to resources. The internal
interface is towards the node manager’s (NMs) ability for
cluster monitoring and resource access management (Vinod
et al., 2013). For this work, the focus is on public interfaces
as it best explains an important frontier between YARN
platform and various applications/frameworks running on it.
RM is a global model of cluster state against the digest of
resource requirements reported by running applications.
AMs codify their need for resources by making one or more
resource-requests each of which track the number of
containers (e.g., 200 containers), resource per container
(4 GB, 2 CPU), locality preference and priority of
requests within the application (Apache Hadoop, 2018).
Resource-requests are designed in a way that captures the
full detail of users’ needs and/or a roll-up version of it. RM
responds to AM request by generating containers together
with tokens that grant access to resources (Apache Hadoop,
2018). Once an application completes its execution, RM
forwards an exit status of finished containers as reported by
NMs to the corresponding AMs (Apache Hadoop, 2018).
Looking at the responsibilities of RM, it is important to
point out that RM is not responsible for coordinating
application execution or task fault tolerance. It does not
provide status or metrics for running applications (now part
of AM) and it does not serve framework-specific reports
of completed jobs (now delegated to a per-framework
daemon). RM only handles live resource scheduling of
applications with the heartbeat communication from AMs
and NMs in the cluster. However, for a greater number of
commodity servers and applications demand, response time
from the global model of RM will be slow. It is, therefore,
necessary to provide a per-rack RM to handle all
request/communication for NMs and AMs within the local
rack with the global RM only assigning application
demands to each of the rack unit resource manager
(RU_RM) and monitoring the liveliness of each of these
units.

The research objectives are:

 A rack-aware scalable resource management system for Hadoop YARN 3

1 To parallelise the global control of the RM in YARN
framework by providing another layer called rack unit
resource manager (RU_RM) layer. This will allow
compute nodes on each rack to be controlled by their
corresponding rack unit RM instead of a single RM
controlling all the compute nodes in the cluster.

2 Carry out a performance evaluation between the
developed model and YARN using yarn scheduler load
simulator (SLS).

Though the simulator is for testing scheduler performance,
it exercises the real YARN RM by simulating NMs and
AMs through handling and dispatching NM/app masters
heartbeat events within the same JVM. The work will alter
the architecture of the simulator to accommodate several
RMs which can be used at the rack unit RM layer of the
developed model. NMs/app masters together with their
schedulers will be re-usable components and will not be
re-designed.

2 Related work

Big data has been a challenge for over four decades, with
the term changing with advances in information technology.
In the ‘70s, data sizes in megabytes were referred to as
‘big’. At a point, data size grew and was measured in
gigabytes, then terabytes and petabytes. Today, big data are
in zettabytes and yottabytes (Vinayak et al., 2012).
Multicore systems were among the early attempts to solve
the problem of big data. Machines were made to have
dozens of processing cores but with only one disk
(Bekkerman et al., 2011). Multicore with their multithread
operating systems allows a task to be broken down into
smaller units called threads. Threads are then executed
concurrently on different CPU cores of the machine
(Dilpreet and Chandan, 2014). Peer-to-peer architecture was
another approach introduced to overcome the problem of
massive data (Steinmetz and Wehrles, 2005). Machines
were connected in a decentralised and distributed manner
with message passing interface (MPI) serving as a
connection protocol within peers (Ripeanu, 2001). With the
growing popularity of cloud computing and continuous
increase in the volume of data, multicore and peer-to-peer
systems became unsuitable for dynamic computations over
large amounts of data. The computational capacity today
has exceeded the capabilities of conventional processing
tools hence, the era of Google file system and MapReduce
by Google; and subsequently, the release of classic Hadoop.

Some systems have recognised limitations in Hadoop
architecture and have provided alternative models to these
limitations. Some of the efforts which closely resemble
YARN are COSMOS (Chaiken et al., 2008), Mesos
(Hindman et al., 2011), Corona (Facebook, 2012) and
Omega (Schwarzkopf et al., 2013) for Microsoft, Twitter,
Facebook, and Google respectively. Though these systems
share a common inspiration of high-level goals of
improving scalability, latency and programming model
flexibility, they all have their architectural differences.

These differences are most times in diverse design priorities
and historical contexts.

COSMOS architectural framework closely resembles
that of YARN. The main objective of the framework is to
offer availability, reliability, scalability, and performance
through its three basic components – COSMOS storage,
COSMOS environment, and structured computations
optimised for parallel execution (SCOPE). The framework
has a job manager (JM), which is the runtime component of
the execution engine. It is a central and coordinating
daemon for all processing vertices with the application
(Chaiken et al., 2008). With multiple applications/
frameworks, COSMOS framework will find it significantly
difficult to handle jobs. Mesos architectural design
implements an offered-based RM (Hindman et al., 2011),
while YARN has a request-based RM (Vinod et al., 2013).
Mesos leverages a pool of central schedulers just like the
type obtained in classic Hadoop (Zikopoulos and Eaton,
2011) but, YARN uses a per-job intra-framework scheduler
which allows AM to request for resources depending on the
criteria which includes location, CPU and memory demand
(Vinod et al., 2013). Corona is an open-source scheduling
framework with a cluster manager responsible for tracking
of nodes and free resources in the cluster (Shouvik and
Daniel, 2013). Each job has a dedicated JobTracker in this
framework. The cluster manager only needs to push
resource grants to JabTracker upon request for task
execution (Shouvik and Daniel, 2013). The approach used
by Corona is a push-based approach, which is different from
the heartbeat-based control-plane framework approach in
YARN and other frameworks. Though latency/scalability
trade-off of these two frameworks deserves a detailed
comparison, heartbeat communication protocol negotiates
and monitors the availability of a resource in a cluster. It is
intended to indicate the health of a machine hence;
consideration between overload in YARN due to constant
heartbeat between RM and other components and efficient
fault tolerance in Corona since it is push-based will have to
be looked at. Corona framework also is not very efficient
for multiple applications when compared to the Hadoop
YARN ecosystem. Omega architectural design geared
towards distributed, multi-level scheduling which reflects a
greater focus on scalability. It is, however hard to enforce
global properties such as capacity/fairness/deadlines on this
system (Schwarzkopf et al., 2013).

Other resource allocation systems that attempt to place
jobs for optimal performance in big data clusters are
Firmament (Gog et al., 2016), h-drf (Bhattacharya et al.,
2013), Sparrow (Outerhout et al., 2013), Matrix (Wang et
al., 2013), Mercury (Konstantinos et al., 2015), Quarsar
(Delimitrou and Kozyrakis, 2014), Awan (Albert et al.,
2016) and Justice (Dimopoulos et al., 2017). Most of these
systems provide efficient scheduling algorithms but still
maintain a single RM in the cluster, which is a bottleneck
for scalability (ability to scale-up cluster). Firmament
architectural design still maintains a centralised scheduler
that can make high-quality placement when scheduling
tasks in cluster by continuously rescheduling all tasks

4 T. Moses et al.

through a min-cost max-flow (MCMF) optimisation. The
system was tested using Google workload trace from
12,500 machines and it showed improved placement latency
by 20× over Quincy (Gog et al., 2016). Firmament still
maintains a central scheduler as YARN model. With
increase applications/jobs requesting resources, a single
resource allocator will be overwhelmed. H-drf proposed by
Bhattacharya et al. (2013) is a hierarchical scheduling
system for diverse datacentre workloads in Hadoop.
Bhattacharya et al. (2013) maintained that most datacentres
exhibit diverse workload with mixed jobs which are
sometimes CPU-intensive, memory-intensive or I/O
intensive. The system, therefore, uses dominant resource
fairness (drf) for job placement. This is a good approach
since jobs are allocated based on the type of resources they
need. The system, however, did not take into consideration
data locality. Outerhout et al. (2013) proposed a distributed,
low latency scheduling framework that demonstrates
a decentralised, randomised sampling approach for
near-optimal performance while avoiding throughput and
availability limitations of centralised design. Outerhout
et al. (2013) presented sparrow; a stateless distributed
scheduler that adapts the power of two choices load
balancing technique to the domain of parallel task
scheduling. The choices require scheduling each task by
probing two random servers and placing the task on the
server that is less busy or has fewer queued tasks (Outerhout
et al., 2013). Sparrow focused mainly on fine-grained task
scheduling for low latency applications. The framework
provides task scheduling which is complementary to the
functionality provided by cluster managers. Instead of
launching a new task, the framework assumes that a
long-running execution process is already running on each
compute node for each framework hence; it only sends a
short task description when a task is launched (Outerhout
et al., 2013). The framework makes approximations when
scheduling tasks thereby trading off many of the complex
features supported by a sophisticated, centralised scheduler
to provide higher scheduling throughput and lower latency.
This framework does not support gang scheduling typically
implemented by bin packing algorithm which searches for
reserved time splits on which an entire job can be run.
Because Sparrow queues tasks on several machines, it lacks
a central point from which to perform bin packing hence,
deadlocks between multiple tasks that require gang
scheduling may occur. Currently, this framework only
supports FIFO order, adding other query-level scheduling
policies may improve end-to-end query performance of the
framework. It is also important that when a compute node
fails, all schedulers with outstanding requests at that node
be informed. A centralised state that relies on heartbeat
protocol to maintain a list of nodes that are alive may be
needed in this framework. Wang et al. (2013) proposed a
task execution framework called matrix to overcome
Hadoop scaling limitations through distributed task
execution. Though matrix was originally developed to
schedule executions of data-intensive scientific applications
of many-task computing on supercomputers, Wang et al.

(2013) saw the need to use the same framework to address
scalability issues of Hadoop through decentralising the
responsibility of RM. The framework is fully distributed by
delegating one scheduler on each compute node (Wang
et al., 2013). For each compute node, there is an executor
and a key-value store (KVS) server. The scheduler on each
of these nodes has the responsibility of managing local
resources for optimising load balancing and data-locality
(Wang et al., 2013). From the architecture of matrix, it is
clear that the framework has a per-node RM (each scheduler
maintains a local view of the resources on an individual
node). For any framework to have a per-node RM, all data
blocks for a single file must be resident on that compute
node. Konstantinos et al. (2015) proposed Mercury; a
hybrid resource management framework that supports
centralised to distributed scheduling on large shared
clusters. The placement policy is such that whenever a
distributed scheduler needs to place a task on a node, it
picks among k nodes with the smallest estimated queuing
delay. This allows for optimal performance and improved
task throughput (Konstantinos et al., 2015). Data are broken
down into blocks and store on several worker nodes in
Hadoop cluster. How Mercury ensures central coordination
of each of for a single application needs to be looked at.
Delimitrou and Kozyrakis (2014) introduced Quasar;
a resource-efficient and QoS-aware cluster management
system. The sole aim of this system is to provide increase
resource utilisation for consistently high application
performance (Delimitrou and Kozyrakis, 2014). The system
still maintains a single resource allocator which is a
bottleneck for scalability. Albert et al. (2016) proposed a
framework called Awan; a RM that helps share computing
resources across multiple frameworks in an edge cloud
environment. The main goal of this system is to provide a
general resource management mechanism that will allow
each framework to schedule its job with high locality in a
geo-distributed environment. To achieve this goal, Awan
implements a resource lease abstraction to allocate
resources to individual framework schedulers. These
schedulers can, in turn, make better scheduling decisions by
considering the availability of desirable local resources
(Albert et al., 2016). In an attempt to provide a shared-state
mechanism where all framework schedulers have global
knowledge of all resources in the cluster (both available and
non-available resources), resource lease conflicts are bound
to occur between schedulers in Awan. Though a mechanism
is in place to resolve these conflicts by RM in Awan, an
extra overhead will frequently be incurred in running
applications in this framework. Justice proposed by
Dimopoulos et al. (2017) is a deadline-aware resource
allocator that uses deadline information supplied with each
job and historical job evaluation logs to implement job
placement. The system, however, does not consider jobs
without a deadline or job that will not be able to meet the
deadline due to resource allocator failure. Panda and Naik
(2018) proposed an efficient data replication algorithm for a
distributed system. The primary focus of their work is on
the redundancy of data at two or more nodes to achieve fault

 A rack-aware scalable resource management system for Hadoop YARN 5

tolerance and improve cluster performance (Panda and
Naik, 2018). The algorithm, called dynamic vote-based data
replication (DVDR) is based on dynamic vote assignment
among connected nodes which consider all types of faults
and re-join failed nodes (Panda and Naik, 2018). Yassir
et al. (2019) proposed a related work which is an algorithm
that minimises big data movement in a cloud environment.
The work focussed on data placement strategies to improve
the overall performance of a cluster. Yassir et al. (2019)
opined that better data placement and reduction in
movement of data through identification of datasets,
estimation of load threshold base on processing speed and
storage capacity improved overall performance of the
cluster. Since data nodes in Hadoop cluster are arranged in
racks, careful data placement in these racks to minimise
data movement as opined by Yassir et al. (2019) and DVDR
by Panda and Naik (2018) need to be looked at for effective
replication of data across racks to avoid cross-rack data
communication.

YARN framework stands out among most of the big
data analytics due to its ability to run several other
frameworks/applications in the cluster. So many other
commercial big data analytic frameworks can run on
Hadoop YARN which makes it more robust and widely
used. Since many other big data analytic tools run on
Hadoop YARN, a greater number of application demands is
therefore needed which leads to higher resource request
from AM in the cluster and worker nodes monitoring
through heartbeat communication via NM in each of these
worker nodes. The responsibility of a single RM to handle

all resource requests from AM and worker node status via
NM will constitute a bottleneck for the scalability of
Hadoop. This paper aims to parallelise the responsibility of
the global RM in YARN by having another layer called rack
unit resource managers (RU_RM) responsible for resource
management of nodes in their corresponding rack.

3 Architecture of YARN framework

Hadoop YARN has a centralised RM as shown in Figure 1.
Though this architectural design has improved scalability
significantly, there are fundamental design issues that cap
the scalability of this framework towards extreme scales.
Some of these design issues include:

1 Centralised RM: RM, which is the core component of
the Hadoop framework, offers the functionalities of
managing, provisioning and monitoring resources like
the CPU, memory and network bandwidth of compute
nodes. These responsibilities obviously, are bottlenecks
for the scalability of Hadoop towards extreme scales.
It slows down execution since all compute nodes
send/receive instructions from a single RM through
heartbeat protocol. Once the RM fails, all execution
will halt. Although YARN provides RM high
availability to protect against a single point of failure,
this technique causes computation overhead because
the RM needs to update the backup storage frequently.

Figure 1 Hadoop YARN architecture (see online version for colours)

Source: Apache Hadoop (2018)

6 T. Moses et al.

2 Hadoop replication factor: the replication factor in
Hadoop framework is such that 2/3 of each block (of a
whole file) is replicated into different data nodes across
racks in a cluster. Since AM is expected to monitor
the execution of a job/application (with its complete
number of blocks) in a cluster, AM will need to
communicate data nodes with input splits of the
corresponding job/application across racks to be able to
monitor this execution. Communication across racks
will results in higher latency for job execution.

3 Job completion time: since only RM coordinates the
release of resources for execution of jobs, several AMs
polling from RM of this framework during resource
request is a bottleneck for the system. It slows down
processing, which means that total turnaround time
(job completion time) for each job will be high.

4 Architecture of the developed model

The architecture of the developed model is shown in
Figure 2. The main aim of this model is to parallelise the
global control of the RM in YARN framework by providing
another layer called rack unit resource manager (RU_RM)

layer. This layer aims to make compute nodes on each rack
to be controlled by their corresponding rack unit RM instead
of a single RM controlling all the compute nodes in the
network. We believe that this will help improve response
and turnaround time for each job/application and will
eliminate single point of failure which makes jobs halt in
the existing model.

Central RM obtains information on which rack contains
2/3 of the total number of blocks for each job from the name
node and pushes a job to the corresponding RU_RM.
RU_RM decides on resource lease requests from the AM in
the rack.

5 Hypothetical test

To justify the working methodology of the developed
model, a hypothetical evaluation is carried out to analyse
task response time for both the developed and existing
YARN models. With another level of abstraction introduced
below the global RM, this test is needed to determine task
response time at both central RM and rack unit RM layer of
the developed model compare to task response time at the
global RM in YARN model.

Figure 2 Architecture of the developed model (see online version for colours)

 A rack-aware scalable resource management system for Hadoop YARN 7

Let us assume to have three jobs (applications) to be
processed and that, each instruction cycle in executing any
of these jobs takes 0.01ns (assume that three jobs are of the
same size). For each job, therefore, the first five instruction
cycles in the existing framework will be 0.05ns (as obtained
from Algorithm 1). Since there is only one RM, the last
six instructions will require RM communicating with NM to
launch containers and with AM for resource requests. Since
no more than one instruction can be given at a time, it
means that RM will interleave these instructions between
the three jobs (applications). Assume by intuition, that
resource lease from RM to AM takes 3 ns and the
interleaving of processes follows FIFO order. It means that
Job 1 gets resources immediately hence, the delay time is
zero (0). Job 2 will get access to a resource at time 3 ns
while Job 3 at time 6 ns. The overall time it will take to
process the three jobs will be as follows:

1 (0.01 5) 0 0.05Job ns ns ns   

2 (0.01 5) 3 3.05Job ns ns ns   

3 (0.01 5) 6 6.05Job ns ns ns   

Total task response time needed to process the
three jobs = 9.15 ns.

Algorithm 1 Job execution in YARN

a. Job submission phase

 Step 1: The job gets submitted to the job client.

 Step 2: The job client request for a new job id.

 Step 3: The job client then checks if the output
directory has been created. After verifying
this, it copies the job resources to the HDFS.

 Step 4: The job client then submits the job to the
resource manager.

b. Job initialisation phase

 Remember that, resource manager has two units –
resource scheduler and application manager. The
scheduler schedules and allocates resources while
application manager monitors the status and process of
the job.

 Step 5: As soon as the scheduler picks a job, it
contacts the node manager to allocate a
container and launch application master
for the job.

 Step 6: Application master creates an object for
the job. This is done for bookkeeping
purposes and task management.

 Step 7: The application master retrieves input
splits from HDFS and creates 1 map per
split. The application master at this point
decides how to execute the job. If the job is
a small task, the application master runs
the job in its JVM to avoid unnecessary
overhead. These types of tasks are called
Uber tasks in Hadoop framework.

c. Task assignment phase

 Step 8: If the job is large, the application master
requests the resource manager to allocate the

computing resources needed. Scheduler at
this point knows where the resources are
located. It gathers this information from the
heartbeat it gets from each worker node. It
uses this information to consider data locality
while assigning a task. The scheduler tries as
much as possible to assign a task to where the
data are located. If this is not possible, it
assigns the task to another node within the
cluster.

d. Task execution phase

 Step 9: Application master contacts the node
manager assigned to execute the task, to start
a container. The node manager then launches
the YARN child.

 YARN child is a Java program that has the
main class ‘YarnChild’. It runs a separate
JVM to isolate user code from a long-running
system.

 Step 10: YarnChild retrieves all job resources from the
HDFS.

 Step 11: YarnChild now runs the map and reduce
tasks.

e. Progress and update phase

 In this phase, YarnChild sends the progress report every
3 seconds to the application master. Application master
in turn aggregates and sends an update directly to the
job client.

f. Job completion phase

 Application master and task containers clean up their
working state.

With the developed model, the first seven instruction cycles
will be 0.07 ns (as obtained in Algorithm 2). Since each
RU_RM node executes just one job at a time, the last
six instructions therefore are carried out at the same time on
different RU_RM node. Therefore, if it takes 3 ns for
resource lease in the existing system; it will take 1/3 ns of
5 steps for resource lease in the new model. Hence, the
process time for the three jobs will be as follows:

1 (0.01 7) 1 3 5 _ 1

0.07 1.67 1.74

Job ns ns of on RU RM

ns ns ns

  
  

2 (0.01 7) 1 3 5 _ 2

0.07 1.67 1.74

Job ns ns of on RU RM

ns ns ns

  
  

3 (0.01 7) 1 3 5 _ 3

0.07 1.67 1.74

Job ns ns of on RU RM

ns ns ns

  
  

Total task response time needed to process these
three jobs = 5.22 ns.

Algorithm 2 Job execution in the developed model

a. Job submission phase

 Step 1: The job gets submitted to the job client.

 Step 2: The job client request for a new job id.

 Step 3: The job client then checks if the output
directory has been created. After verifying
this, it copies the job resources to the HDFS.

8 T. Moses et al.

 Step 4: The job client then submits the job to
the resource manager.

b. Job initialisation phase

 Step 5: Resource manager gets input splits for
the said job.

 Step 6: With the information in Step 5,
the resource manager schedules
appropriate rack unit resource
manager (RU_RM) with 2/3 of the
input split to execute the job.

 Step 7: The scheduler at the RU_RM picks the
job and contacts the appropriate node
manager to launch application master
for the job.

 Step 8: Application master creates an object for the
job. This is done for bookkeeping purposes
and task management. The application master
creates 1 map per split from each input split
on the data node. The application master at
this point decides how to execute the job. If
the job is a small task, the application master
runs the job in its JVM to avoid unnecessary
overhead.

c. Task assignment phase

 Step 9: If the job is large, the application master
requests the rack unit resource manager to
allocate the computing resources needed
(container). Scheduler at this point knows
where the resources are located. It gathers
this information from the heartbeat it gets
from each worker node in the rack. It uses
this information to consider data locality
while assigning a task. The scheduler tries as
much as possible to assign a task to where the
data are located. If this is not possible, it
assigns the task to another node within the
rack.

d. Task execution phase

 Step 10: The rack unit resource manager through the
appropriate node manager launches the
YARN child.

 Step 11: YarnChild retrieves all job resources from the
HDFS.

 Step 12: YarnChild now runs the map and reduce
tasks.

e. Progress and update phase

 In this phase, YarnChild sends the progress report every
3 seconds to the application master. Application master
in turn aggregates and sends an update directly to the
job client.

f. Job completion phase

 Application master and task containers clean up their
working state.

6 Experimental setup and results

This section evaluates the developed model by comparing it
with the existing model in processing typical Hadoop
workloads like sort, WordCount, TeraSort, PageRank,

naïve Bayes, and K-means. The experimental cluster for
this evaluation consists of four systems. One of these
four systems is designed to be both master and a slave node
while the other three are slave nodes. We have four nodes
with each node interconnected by 10 G-Ethernet. Each node
has two Intel Xeon CPU E5-2670 running at 2.60 GHz.
Each CPU has eight cores (each core has two threads:
hyper-threading). The memory size for each node is 64 GB.
CentOS 6.7 operating system and Java 1.8.0 were used for
the cluster. YARN SLS’s architecture was altered to
accommodate several RMs used as rack unit RMs for the
developed model. NMs and AMs together with their
schedulers were re-usable components for the developed
model. We set HDFS block replication to be 3 and block
size to 128 MB.

6.1 Definition of metrics

We define two metrics to evaluate the performance
of YARN and improved YARN. The two metrics are
efficiency and average-delay ratio.

6.1.1 Efficiency

Efficiency in this work represents the percentage of the total
ideal finished time (Total-Tideal) to the actual finished time
(Tactual) of a task. Tideal is run time obtained by running a
single data block (without overheads). A single data block
was set as an Uber task, which was processed by AM in its
JVM to avoid unnecessary overhead. Tactual is the total
running time (with overheads) obtained by executing
workloads on existing and developed models.

This metric helps quantify the average cluster utilisation
of the developed and existing model. This is represented by
equation (1).

 *100%ideal actualEfficiency Total T T  (1)

*
ideal

ideal

Total T number of blocks for each dataset

T

 
 (2)

6.1.2 Average task-delay ratio

Average task-delay ratio (rtd) for this work is computed as
the normalised difference between ideal task finished time
(Titf) and average actual task finished time (Tatf).

This metric measures how fast the models can respond
from a task’s perspective. This is represented by equation
(3).

 td atf itf itfr T T T  (3)

where

atf actualT T number of blocks (4)

itf idealT T (5)

 A rack-aware scalable resource management system for Hadoop YARN 9

6.2 Benchmarks

We use six benchmarks to compare our results. The
benchmarks are sort, WordCount, TeraSort, PageRank,
naïve Bayes, and K-means. Sort workload is used to sort
input text files by key. WordCount reads a text file and
count the number of occurrences of each word. TeraSort has
three applications – TeraGen used to generate input data,
TeraSort for sorting input data and TeraValidate for
checking the output. PageRank ranks web pages in its
search engines. Naïve Bayes is a machine learning
benchmark based on Bayes’ theorem with independence
assumptions between features to categorise text. K-means is
used to group items into k clusters (Huang et al., 2011).

These six benchmarks cover HiBench benchmark suites
– micro benchmark (sort, WordCount, and TeraSort), web
search (PageRank) and machine learning (naïve Bayes and
K-means clustering). We use the Hadoop benchmark and
data generator provided in HiBench benchmark suite 4.0
from https://github.com/intel-hadoop/HiBench.

6.3 Results and analysis

We present the results of experiments and analysis for
benchmarks described above. To compare the performance
of the developed and existing models, we record the running
time for each workload operation. The running time was
recorded in seconds.

6.3.1 Sort

Table 1 represents running time (Tactual) performance
comparison for sort on YARN and improved YARN model.

Table 1 Sort running time (seconds)

Input 4 GB 8 GB 16 GB 32 GB 64 GB

YARN 54 107 194 589 1,947

Improved
YARN

51 99 173 402 1,025

Figure 3 Efficiency from running sort workload (see online
version for colours)

The input sizes for these datasets range from 4 GB to
64 GB. To obtain ideal runtime (Tideal) for this workload, we
ran a single block size of 128 MB which gave an average

of 1.3 seconds after three attempts. Efficiency and
average-delay ratio were calculated from equations (1)
and (3) for both YARN and improved YARN models with
the chart represented in Figures 3 and 4 respectively.

Figure 4 Average-task delay ratio from running sort workload
(see online version for colours)

From Figure 3, improved YARN outperformed the existing
YARN model with efficiency 2× better when input size
increased to 64 GB. Also, the average-task delay as shown
in Figure 4 for the developed model is closely 3× less than
the existing model, which also reflected in the overall
performance. Both YARN and improved YARN performed
poorly as input size increase. This may be as a result of the
number of nodes, memory sizes and processor speeds of the
nodes used for the experiment.

6.3.2 WordCount

Running time for YARN and improved YARN on
WordCount workload is as presented in Table 2.

Table 2 WordCount running time (seconds)

Input 4 GB 8 GB 16 GB 32 GB 64 GB

YARN 267 509 982 2,023 4,078

Improved
YARN

235 413 822 1,649 3,309

The input sizes for these datasets range from 4 GB to
64 GB. To obtain Tideal, we ran a single block size of
128 MB which gave an average of 6.2 seconds after
three attempts. Efficiency and average-delay ratio were
calculated from equations (1) and (3) for both YARN and
improved YARN models with the chart represented in
Figures 5 and 6 respectively.

From Figure 5, we see that improved YARN
outperformed YARN. As the input dataset increases from
16 GB to 64 GB, YARN’s efficiency drops by 3% while
improved YARN maintained a nearly consistent
performance dropping by less than 1%. The results show
that improved YARN is more scalable than YARN in the
presence of an increased workload. This is largely due to the
distributed architecture in the rack unit RM layer. The
average-task delay ratio shows a consistent delay for
improved YARN while task-delay in YARN has a

10 T. Moses et al.

continuous increase in time as the input dataset increases,
yielding poor efficiency on cluster utilisation. This is due to
all task pulling resource requests from a single RM.

Figure 5 Efficiency from running WordCount workload
(see online version for colours)

Figure 6 Average-task delay ratio from running WordCount
workload (see online version for colours)

6.3.3 TeraSort

We ran a TeraSort test for assessing YARN and improved
YARN performance using input datasets of sizes ranging
from 8 GB to 128 GB. First, we generate these data using
TeraGen and then used TeraSort to sort the data. Finally, we
validate the sorted results using TeraValidate. Table 3
shows the runtime (Tactual) performance of TeraSort from
each input size.

Table 3 TeraSort running time (seconds)

Input 8 GB 16 GB 32 GB 64 GB 128 GB

YARN 85 156 572 1,219 3,334

Improved
YARN

84 151 566 1,134 3,013

We ran a single block comprising 128 MB with
three iterations. The average ideal runtime (Tideal) obtained
for a single block was 1.1 seconds. Figures 7 and 8 show the
efficiency and average-task delay ratio for both YARN and
improved YARN models.

Figure 7 Efficiency from running TeraSort workload (see online
version for colours)

Figure 8 Average-task delay ratio from running TeraSort
workload (see online version for colours)

We observed that YARN achieved performance close to
improved YARN. However, there is still a significant
difference with improved YARN outperforming YARN as
input datasets increases. Also, task delay for both models
dropped between input data sizes of 16 GB and 64 GB with
a significant rise in the existing model when input data size
increased to 128 GB. This significant increase shows that
with more datasets, improved YARN will be more scalable
than YARN.

6.3.4 PageRank

Table 4 represents runtime performance comparison for
PageRank on YARN and improved YARN.

Table 4 PageRank running time (seconds)

Input 2 M 4 M 8 M 16 M 30 M

YARN 405 715 1,401 2,852 5,562

Improved
YARN

396 675 1,297 2,614 5,001

The input datasets for this experiment as shown in Table 4
ranges from 2 million pages to 30 million pages. The sizes
of these input datasets are from 1.3 GB to 19.7 GB. To
obtain ideal runtime for this workload, we ran a single
block which is approximately 200 thousand pages

 A rack-aware scalable resource management system for Hadoop YARN 11

with three iterations. Average ideal runtime (Tideal) of
30.1 seconds was obtained. Efficiency and average-task
delay ratio for both existing and developed models are
shown in Figures 9 and 10.

Figure 9 Efficiency from PageRank workload (see online
version for colours)

Figure 10 Average-task delay ratio from PageRank workload
(see online version for colours)

Input datasets of 2 M and 4 M show no significant
differences in the efficiency of YARN and improved YARN
model. With an increase in input datasets, however,
improved YARN performed better than YARN. With an
increase in input datasets also, task delay for improved
YARN is 2× less compared to delay on the YARN model.
This is largely due to multiple RMs at rack unit RM layer of
improved YARN.

6.3.5 Naïve Bayes

Table 5 represents running time (Tactual) performance for
naïve Bayes between YARN and improved YARN.

Table 5 PageRank running time (seconds)

Input 100 K 200 K 400 K 800 K 1.6 M

YARN 636 1,289 2,475 4,789 12,725

Improved
YARN

608 1,211 2,293 4,462 10,322

The input datasets are from 100 thousand to 1.6 million
which ranges from 0.45 GB to 7.5 GB. Ideal run time for a
single block of approximately 25 k was 149 seconds.
Figures 11 and 12 show the efficiency and average-task
delay ratio for YARN and improved YARN.

Figure 11 Efficiency from naïve Bayes workload (see online
version for colours)

Figure 12 Average-task delay ratio from naïve Bayes workload
(see online version for colours)

Improved YARN shows consistency in cluster utilisation
only dropping by approximately 2% as input datasets get
bigger. Though YARN also shows the same consistency,
performance dropped significantly when the input dataset
became 1.6 M.

6.3.6 K-means

Runtime performance for YARN and improved YARN
using K-means workload is shown in Table 6. Input datasets
for this experiment ranges from 50 M to 800 M records with
sizes ranging from 10 GB to 160 GB. Figures 13 and 14
show the efficiency and average-task delay ratio for YARN
and improved YARN models.

Table 6 K-means running time (seconds)

Input 50 M 100 M 200 M 400 M 800 M

YARN 334 656 1,357 2,755 6,553

Improved
YARN

327 643 1,336 2,694 5,426

12 T. Moses et al.

Figure 13 Efficiency from K-means workload (see online
version for colours)

Figure 14 Average-task delay ratio from K-means workload
(see online version for colours)

We ran this algorithm using five clusters and obtained an
ideal runtime of 3.9 seconds for a single block of
approximately 7 M input data size. YARN performed
poorly as input datasets increases. Improved YARN shows a
much slower decreasing trend and became stable from
200 M to 800 M in terms of efficiency and average-task
delay ratio. The increasing trend in YARN and much stable
performance of improved YARN is likely to hold for more
input datasets. The performance of improved YARN is in
the distributed architecture of RMs in the cluster.

7 Conclusions

A model of improved scalable resource management system
for Hadoop YARN is an improvement over the existing
Hadoop YARN model. The finished time of workload
operation in the log file for YARN and improved YARN
was used as a basis for comparing the models. Results
obtained from computation of efficiency and average
task-delay ratio showed that as file size increases, improved
YARN performs better than the existing YARN model.
Since Hadoop framework is intended for massive data, it
implies that improved YARN promises to proffer better
resource management for a scalable Hadoop framework.

Future work will look at providing efficient fault
tolerance mechanisms at the Rack_Unit RM layer to prevent
any fault that may lead to computation issues for data nodes
on any of the rack. We will also look at how this solution

can be implemented in other big data resource allocation
systems.

References

Aboudi, N.E. and Benhlima, L. (2017) ‘Parallel and distributed
population based feature selection framework for health
monitoring’, International Journal of Cloud Applications and
Computing, Vol. 7, No. 1, pp.57–71.

Albert, J., Abhishek, C. and Jon, W. (2016) ‘Awan: locality-aware
resource manager for geo-distributed data-intensive
applications’, IEEE International Conference on Cloud
Engineering (IC2E), IEEE Computer Society, Berlin,
Germany.

Apache Hadoop (2018) Apache Hadoop YARN [online]
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/YARN.html (accessed 19 November 2018).

Bekkerman, R., Bilenko, M. and Langford, J. (2011) Scaling Up
Machine Learning: Parallel and Distributed Approaches,
Cambridge University Press, England.

Bhattacharya, A.A., Culler, D., Freedman, E., Ghodsi, A.,
Shenker, S. and Stoica, I. (2013) ‘Hierarchical scheduling for
diverse datacentre workloads’, Proceedings of the 4th Annual
Symposium on Cloud Computing, ACM, Santa Clara,
California.

Bialecki, A., Cafarella, M., Cutting, D. and O’Malley, O. (2005)
Hadoop: A Framework for Running Applications on
Large Clusters Built of Commodity Hardware [online]
http://lucene.apache.org/hadoop/ (accessed 6 June 2015).

Chaiken, R., Jenkins, B., Larson, P.A., Ramsey, B., Shakib, D.,
Weaver, S. and Zhou, J. (2008) ‘Scope: easy and efficient
parallel processing of massive data sets’, Proceedings of the
VLDB Endowment, Vol. 1, No. 2, pp.1265–1276.

Dean, J. and Ghemawat, S. (2004) ‘MapReduce: simplified data
processing on large clusters’, OSDI ‘04: 6th Symposium on
Operating Systems Design and Implementation, USENIX
Association, Berkeley, CA.

Delimitrou, C. and Kozyrakis, C. (2014) ‘Quarsar:
resource-efficient and QoS-aware cluster management’,
ASPLOS ‘14, ACM, Lake City, Utah, USA.

Dilpreet, S. and Chandan, K.R. (2014) ‘A survey on platforms
for big data analytics’, Journal of Big Data: A Springer
Open Journal [online] https://journalofbigdata.springeropen.
com/articles/10.1186/s40537-014-0008-6 (accessed 24 June
2016).

Dimopoulos, S., Krintz, C. and Wolski, R. (2017) ‘Justice:
a deadline-aware fair-share resource allocator for
implementing multi-analytics’, Proceedings of the IEEE
International Conference on Cluster Computing, pp.233–244.

Dominique, A.H. (2015) ‘Hadoop design, architecture and
MapReduce performance’, DH Technologies [online]
http://www.dhtusa.com (accessed 10 March 2015).

Facebook (2012) Under the Hood: Scheduling MapReduce
Jobs More Efficiently with Corona [online] http://on.fb.me/
TxUsYN (accessed 21 October 2015).

Fu, Z., Wu, Z., Li, H., Li, Y., Wu, M., Chen, X., Ye, X., Yu, B.
and Hu, X. (2019) ‘GeaBase: a high-performance distributed
graph database for industry-scale applications’, International
Journal of High Performance Computing and Networking,
Vol. 15, Nos. 1–2, pp.12–21.

 A rack-aware scalable resource management system for Hadoop YARN 13

Gog, I., Gleave, A. and Watson, R.N.M. (2016) ‘Firmament: fast,
centralized cluster scheduling at scale’, Proceedings of the
12th USENIX Symposium on Operating Systems Design and
Implementation, USENIX Association, Savannah, GA, USA.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A.,
Joseph, A.D., Katz, R., Shenker, S. and Stoica, I. (2011)
‘Mesos: a platform for fine-grained resource sharing in the
data center’, in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, USENIX
Association, Berkeley, CA, USA.

Huang, S., Huang, J., Dai, J., Xie, T. and Huang, B. (2011)
’The HiBench benchment suit: characterization of the
MapReduce-based data analysis’, in Agrawl, D.,
Candan, K.S. and Li, W.S. (Eds.): New rontiers in
Information and Software as Servces. Lecture notes in
Business Information Processing, Vol 74, Springer, Berlin,
Heidelberg.

Konstantin, S., Hairong, K., Sanjay, R. and Robert, C. (2010)
‘The Hadoop distributed file system’, 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), IEEE, NV, USA.

Konstantinos, K., Rao, S., Curino, C., Douglas, C.,
Chaliparambil, K., Fumarola, G.M., Heddaya, S.,
Mamakrishnan, R. and Sakalanaga, S. (2015) ‘Mercury:
hybrid centralized and distributed scheduling in large
shared clusters’, Proceedings of USENIX Annual Technical
Conference, USENIX Association, Santa Clara, CA, USA.

Outerhout, K., Patrick, W., Matei, Z. and Ion, S. (2013) ‘Sparrow:
distributed, low latency scheduling’, Hertz Foundation
Fellowship, ACM, Pennsylvania, USA, DOI: dx.doi.org/
10.1145/2517349.2522716.

Panda, S.K. and Naik, S. (2018) ‘An efficient data replication
algorithm for distributed systems’, International Journal of
Cloud Applications and Computing, Vol. 8, No. 3, pp.60–77.

Ripeanu, M. (2001) ‘Peer-to-peer architecture case study: Gnutella
network’, Proceedings of First International Conference on
Peer-to-Peer Computing, IEEE, Linkoping, Sweden.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. and
Wilkes, J. (2013) ‘Omega: flexible, scalable schedulers for
large compute clusters’, in Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ‘13,
ACM, New York, NY, USA.

Sergio, C.G. (2015) What about Big Data?, A Project Carried Out
at Computer Science and Engineering Department of the
Open University of Catalonia.

Shouvik, B. and Daniel, A.M. (2013) ‘The anatomy of MapReduce
jobs, scheduling and performance challenges’, Proceedings of
the 2013 Conference of the Computer Measurement Group,
Semantic Scholar, San Diego, CA.

Steinmetz, R. and Wehrles, K. (2005) Peer-to-Peer Systems and
Applications, Springer, Berlin, Heidelberg.

Vinayak, R.B., Michael, J.C. and Chan, L. (2012) ‘Big data
platforms: what’s next?’, ACM Transactions on Accessible
Computing, Vol. 9, No. 1, pp.44–49.

Vinod, K.V., Arun, C.M., Chris, D., Sharad, A., Mahadev, K.,
Robert, E., Thomas, G., Jason, L., Hitesh, S., Siddaharth, S.,
Bikas, S., Carlo, C., Owen, O.M., Sanjay, R., Benjamin, R.
and Eric, B. (2013) ‘Apache Hadoop YARN: yet another
resource negotiator’, SOCC ‘13 Proceedings of the 4th
Annual Symposium on Cloud Computing, ACM, New York,
NY [online] http://dx.doi.org/10.1145/2523616.2523633.

Wang, K., Ma, Z. and Raicu, I. (2013) ‘Modelling many-task
computing workloads on a Petaflop IBM BlueGene/P
supercomputer’, IEEE International Symposium on Parallel
and Distributed Processing, Workshops and PhD Forum,
IEEE Computer Society, Massachusetts, USA.

Wu, J., Guo, S., Li, J. and Zeng, D. (2006) ‘Big data meet green
challenges: big data toward green applications’, IEEE Systems
Journal, Vol. 10, No. 3, pp.888–900.

Yassir, S., Zbakh, M. and Claude, T. (2019) ‘Graph-based model
and algorithm for minimizing dig data movement in a cloud
environment’, International Journal of High Performance
Computing and Networking, Vol. 14, No. 3, pp.365–375.

Zikopoulos, P. and Eaton, C. (2011) Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming Data,
1st ed., McGraw-Hill, Osbome Media [online] https://dl.acm.
org/doi/book/10.5555/2132803 (accessed 30 January 2012).

