
14 Int. J. High Performance Computing and Networking, Vol. 16, No. 1, 2020

Copyright © 2020 Inderscience Enterprises Ltd.

Distributed software defined information centric
networking

Rihab Jmal* and Lamia Chaari Fourati
Laboratory of Technologies for Smart Systems (LT2S),
Digital Research Center of Sfax,
B.P. 275, Sfax, Tunisia
and
Sfax University,
3021 Sfax, Tunisia
Email: rihab.jmal1@gmail.com
Email: lamia.chaari@enis.rnu.tn
*Corresponding author

Abstract: Recently, a new trend has emerged based on combining software defined networking
(SDN) and information centric networking (ICN) as a promising approach for the future internet.
More serious control plane problems related to scalability, fault-tolerance and consistency may
affect software defined information centric networking (SD-ICN) compared to traditional SDN
environment regarding new augmented features such as content name-based communication and
in-network caching. In this paper, we propose a distributed software defined information centric
networking (DSD-ICN) that provides ICN features over SDN network with multiple controllers.
We addressed in our design the fault-tolerant and strong consistency of the control plane which
allows the transparent distribution of the content over different network domains.

Keywords: software defined networking; SDN; information-centric networking; ICN; multiple
controllers; inter-domain; distributed.

Reference to this paper should be made as follows: Jmal, R. and Fourati, L.C. (2020)
‘Distributed software defined information centric networking’, Int. J. High Performance
Computing and Networking, Vol. 16, No. 1, pp.14–25.

Biographical notes: Rihab Jmal is a Researcher at the Laboratory of Technologies for Smart
Systems (LT2S) belonging to the Digital Research Center of Sfax (CRNS), Tunisia. She received
her PhD degree in Computer Systems Engineering from Sfax National Engineering School
(ENIS) in 2018. She received her BS and MS degrees in Computing and Multimedia from the
Higher Institute of Computer and Multimedia of Sfax University in 2011 and 2013, respectively.
Her research interests include multimedia, communications and networking which are specially
related to video streaming, software defined networking, content centric networks and IoT.

Lamia Chaari Fourati is an Associate Professor at the Higher Institute of Computer and
Multimedia of Sfax University. She received her Engineering, PhD and HDR degrees in
Telecommunications from Sfax National Engineering School (ENIS) in TUNISIA. She is also a
researcher at the Laboratory of Technologies for Smart Systems (LT2S) belonging to the Digital
Research Center of Sfax (CRNS). Her research interests include communications, networking
and signal processing which are specially related to wireless, e-health and new generation
networks.

1 Introduction

The current internet is used in significantly different
contexts, forms and sizes from the basic design precepts and
original vision. This development of internet usage
dominated by content distribution and retrieval introduced
new internet architecture named information centric
networking (ICN) (Vasilakos et al., 2015).

ICN proposes a paradigm shift from the traditional
communication between end hosts to a more sophisticated
paradigm centred on data, content and users instead of
hosts.

Thus, this novel paradigm poses the focus on the
delivery of the desired content to the intended users by
decoupling information from its sources. Objects are
invoked directly by their name instead of being addressed
through their location.

The ICN presents a receiver-driven networking model.
It consists of building the features directly into the
networking design. When end-users request contents based
on name, these interests are managed in the network with
consideration of ICN natively including features such as
routing by name, location-independent naming, in-network
caching, self-secured content, multicast, etc.

 Distributed software defined information centric networking 15

Although many works (Vasilakos et al., 2015; Amadeo
et al., 2016; Jmal and Fourati, 2017c) have studied ICN in
the past few years to propose a concrete deployable solution
in reality, it is still in its early stage.

Firstly, the migration from IP to named content is so
costly and produces incompatibility issues, especially when
using a clean slate architecture design.

Secondly, it is hard to perform routing by name in a
large-scale network like the internet. Following ICN
principle, the routers broadcast interest packets to its
neighbour routers which makes the network traffic
uncontrollable on front of the increase of the network size
or the requests number. When the size of the network
increases, the time to receive requested data will be delayed.
Indeed, the effectiveness of network resources is decreased.

Thus, the realisation of an ICN is a big challenge.
The focus of recent research (Jmal and Fourati, 2017a;

Gao et al., 2016; Jmal and Fourati, 2019) has been on
integrating software defined networking (SDN) with ICN
(Jmal and Fourati, 2017b).

In the real world implementation, SDN architecture is a
potential paradigm to prove the feasibility of ICN regarding
its effective impact in other fields such as energy
consumption (Wu et al., 2018; Huang et al., 2016;
Fu et al., 2016; Maaloul et al., 2018). SDN provides high
programmability of network components which assure the
development of new routing and forwarding approaches
with the current hardware components facilitating the
migration to ICN. In addition, thanks to the virtualisation of
the whole network enabled by SDN, the material cost and
complexity are reduced while network functionality is
augmented. Besides, SDN accelerates the network
configurations provisioning by administrators through
decoupling the physical network infrastructure and logical
elements.

Even though the efficiency of the combination
SDN-ICN has been investigated in recent years (Jmal and
Fourati, 2017a; Gao et al., 2016; Jmal and Fourati, 2017b),
most studies have been proved the feasibility of ICN
through SDN architecture and argued the improvements
realised regarding to routing, caching, etc. Nonetheless,
such hybrid architecture integrating SDN and ICN is not
explored in a wide area and in case of multiple domains
while evolved control plane issues such as scalability,
fault-tolerant and consistency have raised.

With this goal, we propose in this paper a
distributed software defined information centric networking
(DSD-ICN). In our earlier work (Jmal and Fourati, 2017a),
we focused on the intra-domain communication between the
controller and ICN nodes.

In this article, we are seeking inter-domain
communication between the different controllers managing
each network domain carrying ICN packets. Our proposal
presents a novel distributed SDN architecture that supports
ICN features while guaranteeing fault-tolerant and strong
consistency of the control plan.

The remainder of this paper is organised as follows.
Section 2 presents a background on ICN/CCN and SDN.

We detail the literature in Section 3. In Section 4 we
introduce our proposed DSD-ICN while its performance
evaluation is in Section 5. Finally, conclusions are drawn in
Section 6.

2 Background

2.1 Background on ICN and CCN

ICN shifts the networking paradigm from the current
host centric paradigm to a content-centric paradigm.
Consequently, a content is named and decoupled from its
location. It can be stored in different locations over the
network, and each content can be addressed and requested
by its name.

Several ICN architectures have been proposed
such as named-data networking/content-centric networking
(NDN/CCN), publish-subscribe internet routing paradigm
(PSIRP), data oriented network architecture (DONA), and
network of information (NetInf) (Vasilakos et al., 2015).

Although each architecture is characterised by its
specific details, they share numerous fundamental properties
such as name-based routing, the unicity of content name,
in-network caching, and content integrity.

PSIRP routing scheme involves four main components:
rendezvous nodes, topology nodes, branching nodes and
forwarding nodes.

In DONA, the resolution handles are leveraged to allow
requested content discovery, and NetInf routing is achieved
by a multi-level DHT mechanism.

Content router is implemented by CCN to realise their
longest prefix matching routing scheme. The in-network
caching feature is integrated into CCN as a content router
function while the other projects are generally depended on
dedicated modules like rendezvous nodes in PSIRP and
storage engine in NetInf.

CCN is built around three data structures: PIT, FIB and
CS.

The client request is forwarded in an interest packet
through CCN nodes. Each traversed CCN node checks its
CS in order to send a data packet as a response in case the
content is stored. Otherwise, the PIT is checked. In case
there is a PIT entry for a previously requested content
chunk, the interest is aggregated in this entry. Alternatively,
the CCN node checks its FIB and while an outgoing
interface for this interest exists in the FIB, a new PIT entry
is made and it forwards the interest. In the worst cases, the
interest is simply rejected.

If the intermediate nodes do not have a copy of the
requested content, the original provider forwards the
appropriate data packet and the traversed nodes store a copy
for future requests (Jmal and Fourati, 2017c).

2.2 Background on SDN

The SDN’s main feature consists of separating control and
data planes which provides a network-wide abstraction.

16 R. Jmal and L.C. Fourati

The decoupled control plane instructs the forwarding
devices, which are commonly OpenFlow switches, via the
OpenFlow protocol.

An OpenFlow switch is composed of:

 flow table indicating to the switch how processing each
flow entry by associating different actions

 secure channel ensuring safe passage of transmission
rules between OpenFlow controller and OpenFlow
switch.

The architecture design of SDN is composed of three
functional layers as illustrated in Figure 1.

 the infrastructure layer (the data plane): corresponds
physically to the network devices

 the control layer: incorporates an SDN controller that
serves as the key of the whole architecture

 the applications layer: communicates with the SDN
controllers via open and programmable API.

Figure 1 SDN layered architecture (see online version
for colours)

Open API and programmable
SDN applications

SDN Controllers

Programmable interfaces
between control plane and

data plane
Nework device Exp :
Router, Switch,….

Application
Layer

Control Layer

Infrastructure
Layer

Business Applications

SDN Applications

Source: Jmal and Fourati (2017b)

2.3 Definition of an SDN domain

An SDN domain presents a part of a network determined by
the network operator. A domain is controlled by an
SDN controller. It can cover multiple network operation
systems (NOS) and communicate directly with certain
SDN-enabled devices. Each NOS typically consists of many
interconnected devices that are compatible with SDN. The
SDN controller aggregates the network topology views from
multiple NOSs and maintains a global view of the networks
covered by the domain. The controller is responsible for
forwarding the application requests to the corresponding
NOS. Two SDN domains are adjacent if there is a physical
link between the two underlying networks.

Within each SDN domain, the appropriate controller can
set domain-specific policies on importing information from
devices, aggregating, and exporting to external entities.
These policies may not be created publicly; as a result,

controllers in other domains may not be aware of such
policies for a given SDN domain.

The network operator that creates the SDN domains
aims to provide a flexible network administration. The
operator decides to divide the entire network into SDN
domains depending on the scale of the underlying network.
For some small-scale data centres, only one SDN domain
can be sufficient.

For a service provider with a large transport network, it
is best to divide the network into SDN domains because the
centralised control with a single controller will create a
bottleneck. For example, the operator can divide his
network into different SDN domains based on physical
locations. He can rent such a part of his network to the local
content provider, etc. Such a deployment scenario requires
an SDN controller that provides powerful network service
capability to applications. In addition, to define domains
and interconnections between them involves more than just
simple connections between SDN boxes; there are various
aspects to consider, such as how their network topologies
connect, what enclosures the neighbouring controllers face
and how to get their addresses, what rights and policies
control the conversation, and so on. Other aspects to
consider as those allowed to deploy ‘programs’ on the SDN
infrastructure, what actions can a ‘program’ perform
depending on who has deployed them: the SDN network
manager is likely to control the deployment of ‘programs’
on the SDN infrastructure.

The focus is then on how deployed programs can affect
other domains and what mechanism we want to use to
communicate this effect to other domains.

3 Related work

In order to provide a deep description about the state
of the art, we have been looking into distributed SDN
architectures. We founded that this is already a recent
research field in progress and there is no standardisation
until now, to the best of our knowledge.

The distributed SDN architectures are managed through
two main approaches as shown in Figure 2:

1 logically centralised

2 logically distributed.

3.1 Logically centralised approach

This approach is characterised by a set of controllers with
the same view of the network and that share the same
database. Among the most known, we cite Onix (Koponen
et al., 2010), HyperFlow (Tootoonchian and Ganjali, 2010),
OpenDay-light (ODL) (Medved et al., 2014) and Kandoo
(Yeganeh and Ganjali, 2012).

Onix (Koponen et al., 2010) uses the distributed hash
table (DHT) to store information about the distributed
network. HyperFlow (Tootoonchian and Ganjali, 2010)

 Distributed software defined information centric networking 17

builds a global network view through the distributed file
system WheelFS (Stribling et al., 2009) and each controller
is in charge of its network. Link status changes and other
events affecting the network view are synchronised between
the controllers.

Figure 2 Classification of distributed SDN architectures
(see online version for colours)

Distributed SDN approaches

Logically centralized

Onix [8]

HyperFlow [9]

Openday‐ light
(ODL) [10]

Kandoo [11]

Logically distributed

SDNi [13]

East‐West (EW)
Bridge [14]

CIDC [16]

DISCO [17]

Although HyperFlow and Onix allow the distribution of the
SDN control plane, they produce a lack of flexibility and
scalability limitation.

ODL (Medved et al., 2014) builds the data structure
trees which consist on the configuration tree and the
operational tree. The desired state of the system is stored in
the configuration tree while the current runtime status is
provided by the operational tree. To support multiple
controllers, the ODL forms the cluster after building the
trees. However, the cluster with its operations require more
resources, bandwidth and time which could decrease the
performance of the network.

Kandoo (Yeganeh and Ganjali, 2012) proposes a
hierarchical framework based on two layers of controllers:

 The top layer: is a logically centralised controller that
preserves the state of the whole network. It is a root
controller that runs non-local applications.

 The bottom layer: presents a set of controllers which
are not interconnected and without knowledge of the
network-wide state. These local controllers execute
local applications as near as possible to switches.

Generally, the logically centralised approach offers
fault-tolerance, elasticity and decentralisation which it is not
feasible for logically distributed architecture where each
domain is managed by its controller having its own
database. For this purpose, our DSD-ICN architecture
fellow the logically centralised approach.

3.2 Logically distributed approach

This approach is more suitable for networks that are vastly
distributed over multiple domains. Each domain is managed
by its controller. Different controllers communicate each
other to share only some useful information enabling some
services like the topology view. In other words, the main
idea is to build an ‘east-west (EW)’ communication
between SDN controllers, as an analogy to OpenFlow being
a ‘north-south’ protocol between NOS and network devices.

Yin et al. (2012) proposed a protocol named
‘SDNi’ enabling the coordination of behaviours between
different SDN controllers and allowing to exchange control
information related to multiple SDN domains.

EW bridge (Lin et al., 2015) is proposed as a design
that support different controllers with various local
network view storage systems. The publish/subscribe model
(Tarkoma, 2012) is used to synchronise data between
different controllers. Eventually, the publish/subscribe
model attempts multicast or group messaging problem. This
model is used for SDN regarding to its scalability compared
to the client-server model. Nevertheless, the scalability is
still a research challenge especially under high load.
Recently, another EW interface is proposed in Benamrane
et al. (2017) called communication interface for
distributed control (CIDC) plane. This interface provides
communication modes (notifications, messages, services,
etc.) to be exchanged between different controllers.
Distributed services (firewall, load balancer and SSL) are
supported thanks to a mechanism based on policy sharing.

Distributed SDN controllers (DISCO) (Phemius et al.,
2014) proposal supports a logically centralised controller for
the intra-domain operation, as well as a logically distributed
controller to achieve inter-domain visibility.

The main drawback of the logically distributed approach
is represented by its weak consistency on semantics;
eventually, all controller nodes are informed by the data
updates on different nodes. Thus, there is a delay taken by
distinct nodes to read new or old values for the same
property. Otherwise, strong consistency ensures that all
controller nodes have the access to the most updated
property value in the same time (Kreutz et al., 2015).

Works on ICN in distributed areas are so limited. Gao
et al. (2016) proposed an intra-domain communication in
software defined information centric networking (SD-ICN)
and argued that their solution is compatible with CoLoR
(Luo et al., 2014) which presents a general architecture
design for ICN inter-domain routing.

Our proposed DSD-ICN follows the logically
centralised approach in term of centralising the treatment of
control plane operating. We focalise our work on
consistency and fault-tolerance of the control plan while
managing ICN contents. It provides strong consistency
through its architecture based on inter-domain information
base (IIB) system which allows multiple controllers to
coordinate their actions.

Consequently, we studied recently proposed approaches
focusing on SDN consistency and fault-tolerance.

Schiff et al. (2016) proposed a synchronisation
framework for control planes built around atomic
transactions realised in-band on the switches of the data
plane. The data-plane switch configuration space is used
in this approach as a transactional shared memory.
An additional information about conflicts between the
controllers can be stored in this memory. Thus, a transaction
is designated to include standard control, update operations
and synchronisation primitives functioning on this shared
memory.

18 R. Jmal and L.C. Fourati

Botelho et al. (2016) provide a modular architecture
supporting a fault-tolerant data store that allows a
transparent distribution of the control plane through the
strong consistency properties. Each controller is responsible
for managing a network domain and the coordination
between different controllers is achieved thanks to the
replicated, fault tolerant data store.

The main drawback of this solution is presented by the
performance overhead and the limited scalability.

Beehive (Yeganeh and Ganjali, 2016) allows the
calculation of offloading that depends on the state of any
application connected to any controller belonging to the set
of distributed controllers. The state of the application in
beehive is stored as key-value pairs in a shared distributed
data store. The calculations in the application are mapped
to the corresponding replication controller based on an
application-specific mapping function. This function queries
a globally synchronised dictionary and maps the calculation
tasks to the appropriate location (where the data resides).
Indeed, the computation process is executed at different
controllers dynamically by moving around the state
stored in a distributed data store. However, dynamic state
placement results overheads such as running a consensus
algorithm between controllers to determine the location of
the state, which causes expensive synchronisation and
affects performance.

In addition, Hydra (Chang et al., 2016) presents a
framework for distributed SDN controllers based on
functional slicing that presents a complementary approach
to scaling. Thus, several SDN applications belonging to the
same topological partition can be placed in physically
separate servers. In Hydra, the choice of partitions is based
on the convergence time as the main metric. Application
instances are assigned to partitions in order to minimise
response times while taking into consideration the

communication between applications of a partition and
instances of an application over partitions. Nevertheless,
Hydra increases latency when critical paths cover multiple
servers.

Therefore, we can deduce the importance of a shared
memory between the different distributed SDN controllers.
In addition, the communication between the different
partitions, to execute the SDN applications, can generate
overloads that affect the system performances.

We summarise the related works in Table 1 where we
highlight the difference between our proposal DSD-ICN and
other cited approaches. DSD-ICN is distinguished from the
others by the fact that is the only approach that consider a
logically centralised information management, provides
consistency and fault-tolerance in addition to the support of
ICN.

4 DSD-ICN proposal

DSD-ICN allows distributing ICN content in a large-scale
supervised network which is benefic to many relevant
applications such as mobile edge computing (Jararweh
et al., 2017) and cloud computing (Li et al., 2018; Gupta
et al., 2017) where the access to the requested information is
facilitated even in large networks where the requested
information is located in a different side. Besides, with
DSD-ICN the network security becomes scalable. Security
can scale as software scales and as new clouds, workloads
and network segments are provisioned. Thus, our proposal
provides a promising environment to implement security
applications (Jiang et al., 2018; Deka, 2015; Gupta, 2018)
and improve the user experience (Gupta et al., 2017; Gupta
and Gupta, 2015).

Table 1 A summary of related works

Approach and date of
publication

Logically centralised Logically distributed ICN supported
Consistency and
fault-tolerance

Koponen et al. (2010)
Tootoonchian and Ganjali (2010)

Medved et al. (2014)

Yeganeh and Ganjali (2012)

Yin et al. (2012)

Lin et al. (2015)

Benamrane et al. (2017)

Phemius et al. (2014)

Gao et al. (2016)

Schiff et al. (2016)

Botelho et al. (2016)

Yeganeh and Ganjali (2016)

Chang et al. (2016)

DSD-ICN (our proposal)

 Distributed software defined information centric networking 19

DSD-ICN is performing two main functionalities.
The first one concerns providing ICN features over
SDN architecture while the second functionality is based
on inter-domain communication. We follow an overlay
architecture based on content centric networking (CCN)
(Jacobson et al., 2009) implementation with the existing
OpenFlow switch.

When a CCN client requests a content by name, the
request is received by a CCN node which checks its content
store (CS), if the requested content is existent a data packet
is forwarded. In the other case, the content name is mapped
to an IP address in order to be processed by the OpenFlow
switch. The configuration of CCN implementation on top of
OpenFlow switch is applied through an adaptation layer
which perform hashing and mapping of the content name
into IP addresses. Then, the request is forwarded to the
controller, the responsible of the management of the
whole software defined information centric network. The
controller is content-aware, it generates rules on ICN nodes
to optimise on content routing regarding to its broad view of
the network. Finally, the data packet is forwarded from the
content provider through the optimised path following the
controller rules.

The optimised path P is considered as the shortest
path with the higher available bandwidth. For this purpose
two equations are verified (Jmal and Fourati, 2019):

0

N
k

i
P Min l

 1

1

k
LC li

i
P Max abw

The parameters used in these equations are described in
Table 2.

As above, we described the intra-domain operation of
our proposed design combining SDN and CCN as shown in
Figure 3.

However, what would happen in case of controller
failure?

For this purpose, the second process addressed in our
design is related to inter-domain communication and
multiple SDN controllers. We aim to overcome one point

failure issue as well as provide strong consistency of the
control plane.

Table 2 Optimised path parameters

Parameter Designation

P The optimised path

N The network nodes

L Links between different nodes

k The length of the path

l = (n, m) Link between an origin node n and a destination m

abwl Available bandwidth for a link l

Plc The links capacity of the path P

Figure 3 Intra-domain design (see online version for colours)

ICN Server

CCNx

Adaptation
layer

OpenFlow
Switch

OF Controller

ICN Client

CCNx

Adaptation
layer

OpenFlow
Switch

CCNx

Adaptation
layer

OpenFlow
Switch

To achieve our goal, we exploited the master-slave
configuration defined in OpenFlow 1.3 (Pfaff et al., 2012),
which allows switches to tolerate controller crashes thanks
to its ability of connection to more than one controller. In
our design, the primary controller of one domain presents
the backup controller of another domain to provide
controller fault tolerance as depicted in Figure 4.

Figure 4 Inter-domain communication architecture (see online version for colours)

OFC1
IIB

ICN Client

ICN Server

ICN border node

ICN border node

Control Plane

Data Plane
Domain1 Domain2

OFC2

Slave

Master

20 R. Jmal and L.C. Fourati

The synchronisation between different controllers is
performed thanks to the shared IIB. The controller decisions
are taken by the control plane on the basis of data plane
events while the consistent network state is performed
through the IIB due to the communicated information such
as read and write operations.

The controller is aware of content locations. When an
ICN server publish a new content, the controller is informed
about its name ‘Namei’ and the IIB is updated to share that
the content with Namei is existent in domain Dj for future
requests on this content from other domains. We noted the
set of domains D and controllers C as follow:

 , 1, 2, 3, ...,jD D j n

 , 1, 2, 3, ...,jC C j n

Algorithm 1 Request dissemination between several controllers

1. if (local lookup process (Dj, Namei)= true)

 // the requested content exists in the local domain

2. Install rules () // the data packet is sent locally

3. else // the requested content does not exist in the local
domain

4. Cj insert Interest entry in IIB <Cj, Dj, Namei, IDh>

5. While (query= false)

6. Ck = Find the best controller to ask ()

7. Send query

8. if (query= true)

9. local lookup process (Dk, Namei)

10. Install rules ()

11. if (content (Namei)= true)

 // the content is sent to the client

12. Update IIB () // to indicate that the request is
satisfied

IDh is the user device identifier used by the controller to
handle the packet forwarding. The flow chart describing the
operational functioning of requesting a content is illustrated
by Figure 5.

The IIB stays tuned. When a new controller is
connected, the IIB is updated by the new controller and its
domain. When a controller is disconnecting, a backup
controller takes its role. The information exchanged
between the different controllers and the IIB is sent through
JSON objects in order to optimise the recovery time.

In fact, the signalling messages include the controllers
reachability update, the network operation update such as
QoS and available software capabilities in the domain, as
well as content publication and request.

We propose Algorithm 1 for the request dissemination
between several controllers in order to find the requested
content.

In an environment that contains multiple controllers,
when the primary controller fails what is the backup
controller that will take its place?

Figure 5 Operational functioning of requesting a content

Client sends Interest
Packet (Namei)

Content is cached

Border ICN node receives
Namei & checks its local

cache

Yes

 No

Reply with data packet

Cj insert interest entry in IIB
<Cj, Dj, Namei, IDh>

Content Namei
exists in Dj

 No

Forward Interest IPi To
SDN controller Cj

Hash and map Namei to
IPi (adaptation layer)

Cj extract Namei from IPi

 IIB lookup process
For Namei

Local lookup process
For Namei at Cj

Yes Cj Install rules in ICN
nodes

Data packet sent to
ICN Client

 Namei exists in
IIB

 Yes

No Drop interest

Install rules in ICN
nodes

Data packet sent to
ICN Client

In this context, we execute a leader (or master) election
process that is executed when a communication is
established between the different controllers. This process
allows early discovery of a controller fail, as well as the
network scheduling in a distributed system with multiple
controllers based on the roles assigned to the controllers.
Consequently, it allows the creation of a consistent
fault-tolerant system and is able to recover the state of a
failed controller and restore its state.

 Distributed software defined information centric networking 21

Indeed, a group of distributed controllers, which is
responsible for the same domain, executes an election
algorithm to determine a new leader controller.

This algorithm assumes that each active controller has a
unique priority identifier. At any time, a controller may
receive an election message from one of his lower
colleagues.

The receiver sends an ‘OK’ message to the sender and
proceeds to his election process.

Finally, only the worthy controller remains. This
controller announces his victory to all distributed controllers
in the group.

The election principle executed, described in Figure 6,
is inspired by the Bully’s algorithm (Stoller, 1997).

Figure 6 Flowchart of the election algorithm

 Controller C observes that
Leader no longer responds

C launches an election

no reply

Higher controller
responds

C sends an election
message to all controllers

with higher identifiers

C wins the election and
becomes Leader

This controller becomes
Leader

5 Performance evaluation

We evaluated the DSD-ICN architecture in Mininet
(http://mininet.org/) environment, the well-known SDN
emulator. Mininet facilitates the realisation of tests similar
to real experiments. We created three domains, each one is
composed of three connected switches handled by one
master controller and configured as slave to the other
controllers. In case of controller crash, the switches are
reconfigured automatically to be handled by another master
controller determined thanks to the election algorithm
executed at the active distributed controllers. We used the
Openvswitch 2.7 that supports OpenFlow 1.3 and above.
We implemented a new module on the floodlight (FL)
(http://www.projectfloodlight.org/floodlight/) controller to
handle ICN networking and content names as well as
another module for the election process.

Moreover, we used the ‘sync service’ offered by FL to
achieve the synchronisation between different controllers
and to apply the IIB functioning. We ran an ICN client on a
host attached to domain 1 and an ICN server attached to

domain 3. We configured on top of OpenFlow switches
CCNx (Smetters et al., 2010), the official implementation of
CCN. The combination is enabled thanks to the proposed
adaptation layer (Jmal and Fourati, 2017a). In our scenario,
the content is published at the server node by ccnputfile
command while the client node downloads the content
through ccngetfile testing tool. We repeated tests for
different files with different sizes as depicted in the
following figures. Figure 7 illustrates the upload time of
each file from the server statistics while Figure 8 shows the
download time from the client statistics.

Figure 7 Upload time at the server (see online version
for colours)

Figure 8 Download time at the client (see online version
for colours)

For the first interests sent, the download time was higher
than the next requests on the content. Hence, thanks to
in-network caching feature supported by DSD-ICN, the
content is served from the closest node to the client which
reduces the download time.

Consequently, there is no variation in the download time
after requesting the first interests since it is served from the
border nodes. Even without caching the download time is
considered interesting since our FL controllers with the IIB
guarantee the lookup latency and accelerate the content
location resolution. Our architecture allows to a content,
published from a domain, to be requested from other
domains and served with an optimised download time.

In order to analyse the performance of the control plane
in a distributed architecture, we consider synchronisation
metrics such as latency and inter-controller communication
overhead.

The convergence time is considered as the time required
for the controllers to establish a communication between
themselves to be aware of the connected controllers and to

22 R. Jmal and L.C. Fourati

determine the leader (master). It is illustrated in terms of
increased number of controllers in Figure 9.

Figure 9 The convergence time according to the number of
controllers (see online version for colours)

Subsequently, we evaluate our architecture considering
different types of SDN applications. For this, we conduct
tests on a topology based on five controllers and nine
switches as described in Table 3.

Table 3 Details on the topology used

Controllers Domains Roles

SW1, SW2 Master C1

SW3, SW4, SW5, SW6,
SW7, SW8, SW9

Slave

SW3, SW4 Master C2

SW1, SW2, SW5, SW6,
SW7, SW8, SW9

Slave

SW5, SW6, SW7 Master C3

SW1, SW2, SW3, SW4, SW8, SW9 Slave

SW8, SW9 Master C4

SW1, SW2, SW3, SW4,
SW5, SW6, SW7

Slave

C5 SW1, SW2, SW3, SW4, SW5,
SW6, SW7, SW8, SW9

Slave

Figure 10 Throughput for firewall (see online version for colours)

Figure 11 Throughput for learning switch (see online version for colours)

Figure 12 Throughput for load balancer (see online version for colours)

 Distributed software defined information centric networking 23

The highlighted SDN applications and functions are:

 Firewall: a latency-sensitive application that filters
messages sent to the controller (packet-in) based on a
set of rules.

 Learning switch: this application emulates the process
of a layer 2 switch forwarding based on a switch table
that associates MAC addresses with switch ports. The
switch is able to generate this table by listening to
each incoming packet which, in turn, is transmitted
according to the existing information in the table.

 Load balancer: this application uses a round-robin
algorithm to distribute requests addressed to a virtual IP
(VIP) address on a set of servers.

The different analyses of these applications and functions
are described as follow. Figure 10, Figure 11 and Figure 12
show the throughput over the time at the control plane when
different OpenFlow and CCN flows are generated in the
data plane. We captured this traffic for firewall, learning
switch, and load balancing using Wireshark (Wireshark
Analyzer, http://www.wireshark.org).

When the firewall is executed, the OpenFlow packets
are 16.26% and the data are 50% of the packets. For the
learning switch, OpenFlow packets are 22.3% and the data
exceed 60% of the packets. For the load balancing, the
OpenFlow packets are 15% and the data is 51%.

Figure 13 Comparison of the average delay between DSD-ICN
and ODL (see online version for colours)

Figure 14 Comparison of the CPU consumption (see online
version for colours)

We can deduce that the overhead of OpenFlow packets
is acceptable over DSD-ICN architecture regarding the
amount of the data forwarded.

The importance and the effectiveness of DSD-ICN
are represented by reducing the convergence time while
maintaining a significant throughput as well as ensuring
responsiveness to latency-sensitive applications.

Afterwards, we conducted tests under the same
conditions in order to compare our FL controllers to the
OpenDay-light (ODL) (Medved et al., 2014) in term of
delay and CPU consumption. The average delay between
DSD-ICN and ODL is depicted in Figure 13 while the
average results in percent of the CPU consumption are
described in Figure 14 for the ‘bootstrapping’ phase as well
as for the ‘control events’ phase. The ‘bootstrapping’
presents the phase where the controllers start and discover
their neighbours. In this step, ODL controllers form a
cluster after the start and share their database, while FL
controllers use the ‘sync service’. In case of the ‘control
events’ phase the controller is on production (i.e., insert
rules).

Results show that our extended FL outperforms ODL.

6 Conclusions

In this paper, we have proposed and evaluated DSD-ICN,
an ICN network over SDN with multiple controllers. We
tried to keep relevant network with a consistent network
view that handles content on the basis of its name even over
different domains. Our proposal provides strong consistency
and fault-tolerance of the control plane. The main
components of the proposed architecture are:

1 ICN nodes composed of CCNx configured on top of
OpenFlow switches with the adaptation layer providing
the conformity between both paradigms. This method is
characterised by simplicity and flexibility as it does not
imposes extensions on either CCNx or OpenFlow.

2 SDN controller handles ICN packets and provides
optimised routing thanks to centralised intelligence.

3 IIB enable synchronisation between different
controllers.

The shared aspect offers high speed data transmission and
intelligent data processing. For future work, we plan to test
DSD-ICN in larger networks as well as analysing load
balancing and multipath selection features.

References

Amadeo, M., Campolo, C. and Molinaro, A. (2016)
‘Information-centric networking for connected vehicles: a
survey and future perspectives’, IEEE Communications
Magazine, Vol. 54, No. 2, pp.98–104.

Benamrane, F., Ben Mamoun, M. and Benaini, R. (2017)
‘An east-west interface for distributed SDN control plane:
implementation and evaluation’, Computers & Electrical
Engineering, January, Vol. 57, pp.162–175.

24 R. Jmal and L.C. Fourati

Botelho, F., Ribeiro, T.A., Ferreira, P., Ramos, F.M. and
Bessani, A. (2016) ‘Design and implementation of a
consistent data store for a distributed SDN control plane’,
in 2016 12th European Dependable Computing Conference
(EDCC), pp.169–180.

Chang, Y., Rezaei, A., Vamanan, B., Hasan, J., Rao, S.
and Vijaykumar, T.N. (2016) Hydra: Leveraging
Functional Slicing for Efficient Distributed SDN Controllers,
arXiv preprint arXiv: 1609.07192.

Deka, G.C. (2015) ‘BDS: browser dependent XSS sanitizer’,
Handbook of Research on Securing Cloud-Based Databases
with Biometric Applications, pp.174–191, IGI Global.

Fu, S.H., Wen, H., Wu, J. and Wu, B. (2016) ‘Cross-networks
energy efficiency tradeoff: from wired networks to wireless
networks’, IEEE Access, June, Vol. 5, pp.15–26.

Gao, S., Zeng, Y., Luo, H. and Zhang, H. (2016) ‘Scalable
control plane for intra-domain communication in software
defined information centric networking’, Future Generation
Computer Systems, March, Vol. 56, pp.110–120.

Gupta, B.B. (2018) Computer and Cyber Security: Principles,
Algorithm, Applications, and Perspectives, p.666, CRC Press,
Taylor & Francis.

Gupta, B.B., Gupta, S. and Chaudhary, P. (2017) ‘Enhancing
the browser-side context-aware sanitization of suspicious
HTML5 code for halting the DOM-based XSS vulnerabilities
in cloud’, International Journal of Cloud Applications and
Computing (IJCAC), Vol. 7, No. 1, pp.1–31.

Gupta, S. and Gupta, B.B. (2015) ‘PHP-sensor: a prototype
method to discover workflow violation and XSS
vulnerabilities in PHP web applications’, in Proceedings of
the 12th ACM International Conference on Computing
Frontiers, ACM, May, p.59.

Huang, H., Guo, S., Wu, J. and Li, J. (2016) ‘Green
DataPath for TCAM-based software-defined networks’, IEEE
Communications Magazine, November, Vol. 54, No. 11,
pp.194–201.

Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F.,
Briggs, N.H. and Braynard, R.L. (2009) ‘Networking named
content’, Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies,
pp.1–12.

Jararweh, Y. et al. (2017) ‘Software-defined system support for
enabling ubiquitous mobile edge computing’, The Computer
Journal, Vol. 60, No. 10, pp.1443–1457.

Jiang, F., Fu, Y., Gupta, B.B., Lou, F., Rho, S., Meng, F. and Tian,
Z. (2018) ‘Deep learning based multi-channel intelligent
attack detection for data security’, IEEE Transactions on
Sustainable Computing, 1 April–June, Vol. 5, No. 2,
pp.204–212, doi: 10.1109/TSUSC.2018.2793284.

Jmal, R. and Fourati, L.C. (2017a) ‘An OpenFlow architecture
for managing content-centric-network (OFAM-CCN) based
on popularity caching strategy’, Computer Standards &
Interfaces, Vol. 51, pp.22–29.

Jmal, R. and Fourati, L.C. (2017b) ‘Content-centric networking
management based-on software defined networks: survey’,
IEEE Transactions on Network and Service Management,
December, Vol. 14, No. 4, pp.1128–1142, doi: 10.1109/
TNSM.2017.2758681.

Jmal, R. and Fourati, L.C. (2017c) ‘Emerging applications
for future internet approach based-on SDN and ICN’,
in 2017 IEEE/ACS 14th International Conference on
Computer Systems and Applications (AICCSA), Hammamet,
pp.208–213.

Jmal, R. and Fourati, L.C. (2019) ‘Assisted DASH-aware
networking over SDN-CCN architecture’, Photonic Network
Communications, Vol. 38, No. 1, pp.37–50.

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L.,
Zhu, M. et al. (2010) ‘Onix: a distributed control platform
for large-scale production networks’, in Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation OSDI10, pp.1–6.

Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E.,
Azodolmolky, S. and Uhlig, S. (2015) ‘Software-defined
networking: a comprehensive survey’, Proceedings of the
IEEE, January, Vol. 103, No. 1, pp.14–76.

Li, T., Gupta, B.B. and Metere, R. (2018) ‘Socially-conforming
cooperative computation in cloud networks’, Journal of
Parallel and Distributed Computing, Vol. 117, pp.274–280.

Lin, P. et al. (2015) ‘A west-east bridge based SDN inter-domain
testbed’, IEEE Communications Magazine, Vol. 53, No. 2,
pp.190–197.

Luo, H., Chen, Z., Cui, J., Zhang, H., Zukerman, M. and Qiao, C.
(2014) ‘CoLoR: an information-centric internet architecture
for innovations’, IEEE Network, Vol. 28, No. 3, pp.4–10.

Maaloul, R., Taktak, R., Chaari, L. and Cousin, B. (2018)
‘Energy-aware routing in carrier-grade ethernet using SDN
approach’, IEEE Transactions on Green Communications and
Networking, Vol. 2, No. 3, pp.844–858.

Medved, J., Varga, R., Tkacik, A. and Gray, K. (2014)
‘OpenDaylight: towards a model-driven SDN controller
architecture’, in IEEE 15th International Symposium on
World of Wireless, Mobile and Multimedia Networks
WoWMoM, pp.1–6.

Pfaff, B., Lantz, B., and Heller, B. (2012) Openflow Switch
Specification, Version 1.3. 0, pp.39–46, Open Networking
Foundation.

Phemius, K., Bouet, M. and Leguay, J. (2014) ‘Disco: distributed
multi-domain SDN controllers’, in 2014 IEEE Network
Operations and Management Symposium (NOMS), pp.1–4.

Schiff, L., Schmid, S. and Kuznetsov, P. (2016) ‘In-band
synchronization for distributed SDN control planes’, ACM
SIGCOMM Computer Communication Review, Vol. 46,
No. 1, pp.37–43.

Smetters, D., Golle, P. and Thornton, J. (2010) CCNx Access
Control Specifications, Technical Report, PARC, Tech. Rep.

Stoller, S.D. (1997) Leader Election in Distributed Systems with
Crash Failures, Technical Report, Indiana University, April,
Vol. 169.

Stribling, J., Sovran, Y., Zhang, I., Pretzer, X., Li, J.,
Kaashoek, M.F. et al. (2009) ‘Flexible, wide-area storage for
distributed systems with WheelFS’, in Proceedings of the
6th USENIX Symposium on Networked Systems Design and
Implementation NSDI09, pp.43–58.

Tarkoma, S. (2012) Publish/Subscribe Systems: Design and
Principles, John Wiley & Sons.

Tootoonchian, A. and Ganjali, Y. (2010) ‘HyperFlow: a distributed
control plane for OpenFlow’, in Proceedings of the Internet
Network Management Conference on Research on Enterprise
Networking, p.3.

Vasilakos, A.V., Li, Z., Simon, G. and You, W. (2015)
‘Information centric network: research challenges and
opportunities’, Journal of Network and Computer
Applications, June, Vol. 52, pp.1–10.

Wireshark Analyzer [online] http://www.wireshark.org.

 Distributed software defined information centric networking 25

Wu, J. et al. (2018) ‘Information and communications technologies
for sustainable development goals: state-of-the-art, needs and
perspectives’, IEEE Communications Surveys & Tutorials,
March, Vol. 20, No. 3, pp.2389–2406.

Yeganeh, S.H. and Ganjali, Y. (2012) ‘Kandoo: a framework for
efficient and scalable offloading of control applications’, in
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, pp.19–24.

Yeganeh, S.H. and Ganjali, Y. (2016) ‘Beehive: simple distributed
programming in software-defined networks’, in Proceedings
of the Symposium on SDN Research, ACM, pp.1–12.

Yin, H., Xie, H., Tsou, T., Lopez, D., Aranda, P. and Sidi, R.
(2012) SDNi: a Message Exchange Protocol for Software
Defined Networks (SDNs) across Multiple Domains,
IETF draft, work in progress.

Websites

http://mininet.org/ (accessed 2017).

http://www.projectfloodlight.org/floodlight/ (accessed 2017).

