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1 Introduction 

The current internet is used in significantly different 
contexts, forms and sizes from the basic design precepts and 
original vision. This development of internet usage 
dominated by content distribution and retrieval introduced 
new internet architecture named information centric 
networking (ICN) (Vasilakos et al., 2015). 

ICN proposes a paradigm shift from the traditional 
communication between end hosts to a more sophisticated 
paradigm centred on data, content and users instead of 
hosts. 

Thus, this novel paradigm poses the focus on the 
delivery of the desired content to the intended users by 
decoupling information from its sources. Objects are 
invoked directly by their name instead of being addressed 
through their location. 

The ICN presents a receiver-driven networking model. 
It consists of building the features directly into the 
networking design. When end-users request contents based 
on name, these interests are managed in the network with 
consideration of ICN natively including features such as 
routing by name, location-independent naming, in-network 
caching, self-secured content, multicast, etc. 



 Distributed software defined information centric networking 15 

Although many works (Vasilakos et al., 2015; Amadeo 
et al., 2016; Jmal and Fourati, 2017c) have studied ICN in 
the past few years to propose a concrete deployable solution 
in reality, it is still in its early stage. 

Firstly, the migration from IP to named content is so 
costly and produces incompatibility issues, especially when 
using a clean slate architecture design. 

Secondly, it is hard to perform routing by name in a 
large-scale network like the internet. Following ICN 
principle, the routers broadcast interest packets to its 
neighbour routers which makes the network traffic 
uncontrollable on front of the increase of the network size 
or the requests number. When the size of the network 
increases, the time to receive requested data will be delayed. 
Indeed, the effectiveness of network resources is decreased. 

Thus, the realisation of an ICN is a big challenge. 
The focus of recent research (Jmal and Fourati, 2017a; 

Gao et al., 2016; Jmal and Fourati, 2019) has been on 
integrating software defined networking (SDN) with ICN 
(Jmal and Fourati, 2017b). 

In the real world implementation, SDN architecture is a 
potential paradigm to prove the feasibility of ICN regarding 
its effective impact in other fields such as energy 
consumption (Wu et al., 2018; Huang et al., 2016;  
Fu et al., 2016; Maaloul et al., 2018). SDN provides high 
programmability of network components which assure the 
development of new routing and forwarding approaches 
with the current hardware components facilitating the 
migration to ICN. In addition, thanks to the virtualisation of 
the whole network enabled by SDN, the material cost and 
complexity are reduced while network functionality is 
augmented. Besides, SDN accelerates the network 
configurations provisioning by administrators through 
decoupling the physical network infrastructure and logical 
elements. 

Even though the efficiency of the combination  
SDN-ICN has been investigated in recent years (Jmal and 
Fourati, 2017a; Gao et al., 2016; Jmal and Fourati, 2017b), 
most studies have been proved the feasibility of ICN 
through SDN architecture and argued the improvements 
realised regarding to routing, caching, etc. Nonetheless, 
such hybrid architecture integrating SDN and ICN is not 
explored in a wide area and in case of multiple domains 
while evolved control plane issues such as scalability,  
fault-tolerant and consistency have raised. 

With this goal, we propose in this paper a  
distributed software defined information centric networking 
(DSD-ICN). In our earlier work (Jmal and Fourati, 2017a), 
we focused on the intra-domain communication between the 
controller and ICN nodes. 

In this article, we are seeking inter-domain 
communication between the different controllers managing 
each network domain carrying ICN packets. Our proposal 
presents a novel distributed SDN architecture that supports 
ICN features while guaranteeing fault-tolerant and strong 
consistency of the control plan. 

The remainder of this paper is organised as follows.  
Section 2 presents a background on ICN/CCN and SDN. 

We detail the literature in Section 3. In Section 4 we 
introduce our proposed DSD-ICN while its performance 
evaluation is in Section 5. Finally, conclusions are drawn in 
Section 6. 

2 Background 

2.1 Background on ICN and CCN 

ICN shifts the networking paradigm from the current  
host centric paradigm to a content-centric paradigm. 
Consequently, a content is named and decoupled from its 
location. It can be stored in different locations over the 
network, and each content can be addressed and requested 
by its name. 

Several ICN architectures have been proposed  
such as named-data networking/content-centric networking 
(NDN/CCN), publish-subscribe internet routing paradigm 
(PSIRP), data oriented network architecture (DONA), and 
network of information (NetInf) (Vasilakos et al., 2015). 

Although each architecture is characterised by its 
specific details, they share numerous fundamental properties 
such as name-based routing, the unicity of content name,  
in-network caching, and content integrity. 

PSIRP routing scheme involves four main components: 
rendezvous nodes, topology nodes, branching nodes and 
forwarding nodes. 

In DONA, the resolution handles are leveraged to allow 
requested content discovery, and NetInf routing is achieved 
by a multi-level DHT mechanism. 

Content router is implemented by CCN to realise their 
longest prefix matching routing scheme. The in-network 
caching feature is integrated into CCN as a content router 
function while the other projects are generally depended on 
dedicated modules like rendezvous nodes in PSIRP and 
storage engine in NetInf. 

CCN is built around three data structures: PIT, FIB and 
CS. 

The client request is forwarded in an interest packet 
through CCN nodes. Each traversed CCN node checks its 
CS in order to send a data packet as a response in case the 
content is stored. Otherwise, the PIT is checked. In case 
there is a PIT entry for a previously requested content 
chunk, the interest is aggregated in this entry. Alternatively, 
the CCN node checks its FIB and while an outgoing 
interface for this interest exists in the FIB, a new PIT entry 
is made and it forwards the interest. In the worst cases, the 
interest is simply rejected. 

If the intermediate nodes do not have a copy of the 
requested content, the original provider forwards the 
appropriate data packet and the traversed nodes store a copy 
for future requests (Jmal and Fourati, 2017c). 

2.2 Background on SDN 

The SDN’s main feature consists of separating control and 
data planes which provides a network-wide abstraction. 
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The decoupled control plane instructs the forwarding 
devices, which are commonly OpenFlow switches, via the 
OpenFlow protocol. 

An OpenFlow switch is composed of: 

 flow table indicating to the switch how processing each 
flow entry by associating different actions 

 secure channel ensuring safe passage of transmission 
rules between OpenFlow controller and OpenFlow 
switch. 

The architecture design of SDN is composed of three 
functional layers as illustrated in Figure 1. 

 the infrastructure layer (the data plane): corresponds 
physically to the network devices 

 the control layer: incorporates an SDN controller that 
serves as the key of the whole architecture 

 the applications layer: communicates with the SDN 
controllers via open and programmable API. 

Figure 1 SDN layered architecture (see online version  
for colours) 
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Source: Jmal and Fourati (2017b) 

2.3 Definition of an SDN domain 

An SDN domain presents a part of a network determined by 
the network operator. A domain is controlled by an  
SDN controller. It can cover multiple network operation 
systems (NOS) and communicate directly with certain 
SDN-enabled devices. Each NOS typically consists of many 
interconnected devices that are compatible with SDN. The 
SDN controller aggregates the network topology views from 
multiple NOSs and maintains a global view of the networks 
covered by the domain. The controller is responsible for 
forwarding the application requests to the corresponding 
NOS. Two SDN domains are adjacent if there is a physical 
link between the two underlying networks. 

Within each SDN domain, the appropriate controller can 
set domain-specific policies on importing information from 
devices, aggregating, and exporting to external entities. 
These policies may not be created publicly; as a result, 

controllers in other domains may not be aware of such 
policies for a given SDN domain. 

The network operator that creates the SDN domains 
aims to provide a flexible network administration. The 
operator decides to divide the entire network into SDN 
domains depending on the scale of the underlying network. 
For some small-scale data centres, only one SDN domain 
can be sufficient. 

For a service provider with a large transport network, it 
is best to divide the network into SDN domains because the 
centralised control with a single controller will create a 
bottleneck. For example, the operator can divide his 
network into different SDN domains based on physical 
locations. He can rent such a part of his network to the local 
content provider, etc. Such a deployment scenario requires 
an SDN controller that provides powerful network service 
capability to applications. In addition, to define domains 
and interconnections between them involves more than just 
simple connections between SDN boxes; there are various 
aspects to consider, such as how their network topologies 
connect, what enclosures the neighbouring controllers face 
and how to get their addresses, what rights and policies 
control the conversation, and so on. Other aspects to 
consider as those allowed to deploy ‘programs’ on the SDN 
infrastructure, what actions can a ‘program’ perform 
depending on who has deployed them: the SDN network 
manager is likely to control the deployment of ‘programs’ 
on the SDN infrastructure. 

The focus is then on how deployed programs can affect 
other domains and what mechanism we want to use to 
communicate this effect to other domains. 

3 Related work 

In order to provide a deep description about the state  
of the art, we have been looking into distributed SDN 
architectures. We founded that this is already a recent 
research field in progress and there is no standardisation 
until now, to the best of our knowledge. 

The distributed SDN architectures are managed through 
two main approaches as shown in Figure 2: 

1 logically centralised 

2 logically distributed. 

3.1 Logically centralised approach 

This approach is characterised by a set of controllers with 
the same view of the network and that share the same 
database. Among the most known, we cite Onix (Koponen 
et al., 2010), HyperFlow (Tootoonchian and Ganjali, 2010), 
OpenDay-light (ODL) (Medved et al., 2014) and Kandoo 
(Yeganeh and Ganjali, 2012). 

Onix (Koponen et al., 2010) uses the distributed hash 
table (DHT) to store information about the distributed 
network. HyperFlow (Tootoonchian and Ganjali, 2010)  
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builds a global network view through the distributed file 
system WheelFS (Stribling et al., 2009) and each controller 
is in charge of its network. Link status changes and other 
events affecting the network view are synchronised between 
the controllers. 

Figure 2 Classification of distributed SDN architectures  
(see online version for colours) 
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Although HyperFlow and Onix allow the distribution of the 
SDN control plane, they produce a lack of flexibility and 
scalability limitation. 

ODL (Medved et al., 2014) builds the data structure 
trees which consist on the configuration tree and the 
operational tree. The desired state of the system is stored in 
the configuration tree while the current runtime status is 
provided by the operational tree. To support multiple 
controllers, the ODL forms the cluster after building the 
trees. However, the cluster with its operations require more 
resources, bandwidth and time which could decrease the 
performance of the network. 

Kandoo (Yeganeh and Ganjali, 2012) proposes a 
hierarchical framework based on two layers of controllers:  

 The top layer: is a logically centralised controller that 
preserves the state of the whole network. It is a root 
controller that runs non-local applications. 

 The bottom layer: presents a set of controllers which 
are not interconnected and without knowledge of the 
network-wide state. These local controllers execute 
local applications as near as possible to switches. 

Generally, the logically centralised approach offers  
fault-tolerance, elasticity and decentralisation which it is not 
feasible for logically distributed architecture where each 
domain is managed by its controller having its own 
database. For this purpose, our DSD-ICN architecture 
fellow the logically centralised approach. 

3.2 Logically distributed approach 

This approach is more suitable for networks that are vastly 
distributed over multiple domains. Each domain is managed 
by its controller. Different controllers communicate each 
other to share only some useful information enabling some 
services like the topology view. In other words, the main 
idea is to build an ‘east-west (EW)’ communication 
between SDN controllers, as an analogy to OpenFlow being 
a ‘north-south’ protocol between NOS and network devices. 

Yin et al. (2012) proposed a protocol named  
‘SDNi’ enabling the coordination of behaviours between 
different SDN controllers and allowing to exchange control 
information related to multiple SDN domains. 

EW bridge (Lin et al., 2015) is proposed as a design  
that support different controllers with various local  
network view storage systems. The publish/subscribe model 
(Tarkoma, 2012) is used to synchronise data between 
different controllers. Eventually, the publish/subscribe 
model attempts multicast or group messaging problem. This 
model is used for SDN regarding to its scalability compared 
to the client-server model. Nevertheless, the scalability is 
still a research challenge especially under high load. 
Recently, another EW interface is proposed in Benamrane  
et al. (2017) called communication interface for  
distributed control (CIDC) plane. This interface provides 
communication modes (notifications, messages, services, 
etc.) to be exchanged between different controllers. 
Distributed services (firewall, load balancer and SSL) are 
supported thanks to a mechanism based on policy sharing. 

Distributed SDN controllers (DISCO) (Phemius et al., 
2014) proposal supports a logically centralised controller for 
the intra-domain operation, as well as a logically distributed 
controller to achieve inter-domain visibility. 

The main drawback of the logically distributed approach 
is represented by its weak consistency on semantics; 
eventually, all controller nodes are informed by the data 
updates on different nodes. Thus, there is a delay taken by 
distinct nodes to read new or old values for the same 
property. Otherwise, strong consistency ensures that all 
controller nodes have the access to the most updated 
property value in the same time (Kreutz et al., 2015). 

Works on ICN in distributed areas are so limited. Gao  
et al. (2016) proposed an intra-domain communication in 
software defined information centric networking (SD-ICN) 
and argued that their solution is compatible with CoLoR 
(Luo et al., 2014) which presents a general architecture 
design for ICN inter-domain routing. 

Our proposed DSD-ICN follows the logically 
centralised approach in term of centralising the treatment of 
control plane operating. We focalise our work on 
consistency and fault-tolerance of the control plan while 
managing ICN contents. It provides strong consistency 
through its architecture based on inter-domain information 
base (IIB) system which allows multiple controllers to 
coordinate their actions. 

Consequently, we studied recently proposed approaches 
focusing on SDN consistency and fault-tolerance. 

Schiff et al. (2016) proposed a synchronisation 
framework for control planes built around atomic 
transactions realised in-band on the switches of the data 
plane. The data-plane switch configuration space is used  
in this approach as a transactional shared memory.  
An additional information about conflicts between the 
controllers can be stored in this memory. Thus, a transaction 
is designated to include standard control, update operations 
and synchronisation primitives functioning on this shared 
memory. 
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Botelho et al. (2016) provide a modular architecture 
supporting a fault-tolerant data store that allows a 
transparent distribution of the control plane through the 
strong consistency properties. Each controller is responsible 
for managing a network domain and the coordination 
between different controllers is achieved thanks to the 
replicated, fault tolerant data store. 

The main drawback of this solution is presented by the 
performance overhead and the limited scalability. 

Beehive (Yeganeh and Ganjali, 2016) allows the 
calculation of offloading that depends on the state of any 
application connected to any controller belonging to the set 
of distributed controllers. The state of the application in 
beehive is stored as key-value pairs in a shared distributed 
data store. The calculations in the application are mapped  
to the corresponding replication controller based on an 
application-specific mapping function. This function queries 
a globally synchronised dictionary and maps the calculation 
tasks to the appropriate location (where the data resides). 
Indeed, the computation process is executed at different 
controllers dynamically by moving around the state  
stored in a distributed data store. However, dynamic state 
placement results overheads such as running a consensus 
algorithm between controllers to determine the location of 
the state, which causes expensive synchronisation and 
affects performance. 

In addition, Hydra (Chang et al., 2016) presents a 
framework for distributed SDN controllers based on 
functional slicing that presents a complementary approach 
to scaling. Thus, several SDN applications belonging to the 
same topological partition can be placed in physically 
separate servers. In Hydra, the choice of partitions is based 
on the convergence time as the main metric. Application 
instances are assigned to partitions in order to minimise 
response times while taking into consideration the 

communication between applications of a partition and 
instances of an application over partitions. Nevertheless, 
Hydra increases latency when critical paths cover multiple 
servers. 

Therefore, we can deduce the importance of a shared 
memory between the different distributed SDN controllers. 
In addition, the communication between the different 
partitions, to execute the SDN applications, can generate 
overloads that affect the system performances. 

We summarise the related works in Table 1 where we 
highlight the difference between our proposal DSD-ICN and 
other cited approaches. DSD-ICN is distinguished from the 
others by the fact that is the only approach that consider a 
logically centralised information management, provides 
consistency and fault-tolerance in addition to the support of 
ICN.  

4 DSD-ICN proposal 

DSD-ICN allows distributing ICN content in a large-scale 
supervised network which is benefic to many relevant 
applications such as mobile edge computing (Jararweh  
et al., 2017) and cloud computing (Li et al., 2018; Gupta  
et al., 2017) where the access to the requested information is 
facilitated even in large networks where the requested 
information is located in a different side. Besides, with 
DSD-ICN the network security becomes scalable. Security 
can scale as software scales and as new clouds, workloads 
and network segments are provisioned. Thus, our proposal 
provides a promising environment to implement security 
applications (Jiang et al., 2018; Deka, 2015; Gupta, 2018) 
and improve the user experience (Gupta et al., 2017; Gupta 
and Gupta, 2015). 

Table 1 A summary of related works 

Approach and date of 
publication 

Logically centralised Logically distributed ICN supported 
Consistency and  
fault-tolerance 

Koponen et al. (2010)     
Tootoonchian and Ganjali (2010)     

Medved et al. (2014)     

Yeganeh and Ganjali (2012)     

Yin et al. (2012)     

Lin et al. (2015)     

Benamrane et al. (2017)     

Phemius et al. (2014)     

Gao et al. (2016)     

Schiff et al. (2016)     

Botelho et al. (2016)     

Yeganeh and Ganjali (2016)     

Chang et al. (2016)     

DSD-ICN (our proposal)     
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DSD-ICN is performing two main functionalities.  
The first one concerns providing ICN features over  
SDN architecture while the second functionality is based  
on inter-domain communication. We follow an overlay 
architecture based on content centric networking (CCN) 
(Jacobson et al., 2009) implementation with the existing 
OpenFlow switch. 

When a CCN client requests a content by name, the 
request is received by a CCN node which checks its content 
store (CS), if the requested content is existent a data packet 
is forwarded. In the other case, the content name is mapped 
to an IP address in order to be processed by the OpenFlow 
switch. The configuration of CCN implementation on top of 
OpenFlow switch is applied through an adaptation layer 
which perform hashing and mapping of the content name 
into IP addresses. Then, the request is forwarded to the 
controller, the responsible of the management of the  
whole software defined information centric network. The 
controller is content-aware, it generates rules on ICN nodes 
to optimise on content routing regarding to its broad view of 
the network. Finally, the data packet is forwarded from the 
content provider through the optimised path following the 
controller rules. 

The optimised path P is considered as the shortest  
path with the higher available bandwidth. For this purpose 
two equations are verified (Jmal and Fourati, 2019): 

 
0

N
k

i
P Min l


   

 1

1

k
LC li

i
P Max abw




   

The parameters used in these equations are described in 
Table 2. 

As above, we described the intra-domain operation of 
our proposed design combining SDN and CCN as shown in 
Figure 3. 

However, what would happen in case of controller 
failure? 

For this purpose, the second process addressed in our 
design is related to inter-domain communication and 
multiple SDN controllers. We aim to overcome one point 

failure issue as well as provide strong consistency of the 
control plane. 

Table 2 Optimised path parameters 

Parameter Designation 

P The optimised path 

N The network nodes 

L Links between different nodes 

k The length of the path 

l = (n, m) Link between an origin node n and a destination m 

abwl Available bandwidth for a link l 

Plc The links capacity of the path P 

Figure 3 Intra-domain design (see online version for colours) 
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To achieve our goal, we exploited the master-slave 
configuration defined in OpenFlow 1.3 (Pfaff et al., 2012), 
which allows switches to tolerate controller crashes thanks 
to its ability of connection to more than one controller. In 
our design, the primary controller of one domain presents 
the backup controller of another domain to provide 
controller fault tolerance as depicted in Figure 4. 

Figure 4 Inter-domain communication architecture (see online version for colours) 
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The synchronisation between different controllers is 
performed thanks to the shared IIB. The controller decisions 
are taken by the control plane on the basis of data plane 
events while the consistent network state is performed 
through the IIB due to the communicated information such 
as read and write operations. 

The controller is aware of content locations. When an 
ICN server publish a new content, the controller is informed 
about its name ‘Namei’ and the IIB is updated to share that 
the content with Namei is existent in domain Dj for future 
requests on this content from other domains. We noted the 
set of domains D and controllers C as follow: 

 , 1, 2, 3, ...,jD D j n   

 , 1, 2, 3, ...,jC C j n   

Algorithm 1 Request dissemination between several controllers 

1. if (local lookup process (Dj, Namei)= true) 

 // the requested content exists in the local domain 

2. Install rules () // the data packet is sent locally 

3. else // the requested content does not exist in the local 
domain 

4. Cj insert Interest entry in IIB <Cj, Dj, Namei, IDh> 

5. While (query= false) 

6. Ck = Find the best controller to ask () 

7. Send query 

8. if (query= true) 

9. local lookup process (Dk, Namei) 

10. Install rules () 

11. if (content (Namei)= true) 

 // the content is sent to the client 

12. Update IIB () // to indicate that the request is 
satisfied 

IDh is the user device identifier used by the controller to 
handle the packet forwarding. The flow chart describing the 
operational functioning of requesting a content is illustrated 
by Figure 5. 

The IIB stays tuned. When a new controller is 
connected, the IIB is updated by the new controller and its 
domain. When a controller is disconnecting, a backup 
controller takes its role. The information exchanged 
between the different controllers and the IIB is sent through 
JSON objects in order to optimise the recovery time. 

In fact, the signalling messages include the controllers 
reachability update, the network operation update such as 
QoS and available software capabilities in the domain, as 
well as content publication and request. 

We propose Algorithm 1 for the request dissemination 
between several controllers in order to find the requested 
content. 

In an environment that contains multiple controllers, 
when the primary controller fails what is the backup 
controller that will take its place? 

Figure 5 Operational functioning of requesting a content 
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In this context, we execute a leader (or master) election 
process that is executed when a communication is 
established between the different controllers. This process 
allows early discovery of a controller fail, as well as the 
network scheduling in a distributed system with multiple 
controllers based on the roles assigned to the controllers. 
Consequently, it allows the creation of a consistent  
fault-tolerant system and is able to recover the state of a 
failed controller and restore its state. 
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Indeed, a group of distributed controllers, which is 
responsible for the same domain, executes an election 
algorithm to determine a new leader controller. 

This algorithm assumes that each active controller has a 
unique priority identifier. At any time, a controller may 
receive an election message from one of his lower 
colleagues. 

The receiver sends an ‘OK’ message to the sender and 
proceeds to his election process. 

Finally, only the worthy controller remains. This 
controller announces his victory to all distributed controllers 
in the group. 

The election principle executed, described in Figure 6,  
is inspired by the Bully’s algorithm (Stoller, 1997). 

Figure 6 Flowchart of the election algorithm 
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5 Performance evaluation 

We evaluated the DSD-ICN architecture in Mininet 
(http://mininet.org/) environment, the well-known SDN 
emulator. Mininet facilitates the realisation of tests similar 
to real experiments. We created three domains, each one is 
composed of three connected switches handled by one 
master controller and configured as slave to the other 
controllers. In case of controller crash, the switches are 
reconfigured automatically to be handled by another master 
controller determined thanks to the election algorithm 
executed at the active distributed controllers. We used the 
Openvswitch 2.7 that supports OpenFlow 1.3 and above. 
We implemented a new module on the floodlight (FL) 
(http://www.projectfloodlight.org/floodlight/) controller to 
handle ICN networking and content names as well as 
another module for the election process. 

Moreover, we used the ‘sync service’ offered by FL to 
achieve the synchronisation between different controllers 
and to apply the IIB functioning. We ran an ICN client on a 
host attached to domain 1 and an ICN server attached to 

domain 3. We configured on top of OpenFlow switches 
CCNx (Smetters et al., 2010), the official implementation of 
CCN. The combination is enabled thanks to the proposed 
adaptation layer (Jmal and Fourati, 2017a). In our scenario, 
the content is published at the server node by ccnputfile 
command while the client node downloads the content 
through ccngetfile testing tool. We repeated tests for 
different files with different sizes as depicted in the 
following figures. Figure 7 illustrates the upload time of 
each file from the server statistics while Figure 8 shows the 
download time from the client statistics. 

Figure 7 Upload time at the server (see online version  
for colours) 

 

Figure 8 Download time at the client (see online version  
for colours) 

 

For the first interests sent, the download time was higher 
than the next requests on the content. Hence, thanks to  
in-network caching feature supported by DSD-ICN, the 
content is served from the closest node to the client which 
reduces the download time. 

Consequently, there is no variation in the download time 
after requesting the first interests since it is served from the 
border nodes. Even without caching the download time is 
considered interesting since our FL controllers with the IIB 
guarantee the lookup latency and accelerate the content 
location resolution. Our architecture allows to a content, 
published from a domain, to be requested from other 
domains and served with an optimised download time. 

In order to analyse the performance of the control plane 
in a distributed architecture, we consider synchronisation 
metrics such as latency and inter-controller communication 
overhead. 

The convergence time is considered as the time required 
for the controllers to establish a communication between 
themselves to be aware of the connected controllers and to 
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determine the leader (master). It is illustrated in terms of 
increased number of controllers in Figure 9. 

Figure 9 The convergence time according to the number of 
controllers (see online version for colours) 

 

Subsequently, we evaluate our architecture considering 
different types of SDN applications. For this, we conduct 
tests on a topology based on five controllers and nine 
switches as described in Table 3. 

Table 3 Details on the topology used 

Controllers Domains Roles 

SW1, SW2 Master C1 

SW3, SW4, SW5, SW6,  
SW7, SW8, SW9 

Slave 

SW3, SW4 Master C2 

SW1, SW2, SW5, SW6,  
SW7, SW8, SW9 

Slave 

SW5, SW6, SW7 Master C3 

SW1, SW2, SW3, SW4, SW8, SW9 Slave 

SW8, SW9 Master C4 

SW1, SW2, SW3, SW4,  
SW5, SW6, SW7 

Slave 

C5 SW1, SW2, SW3, SW4, SW5,  
SW6, SW7, SW8, SW9 

Slave 

Figure 10 Throughput for firewall (see online version for colours) 

 

Figure 11 Throughput for learning switch (see online version for colours) 

 

Figure 12 Throughput for load balancer (see online version for colours) 
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The highlighted SDN applications and functions are: 

 Firewall: a latency-sensitive application that filters 
messages sent to the controller (packet-in) based on a 
set of rules. 

 Learning switch: this application emulates the process 
of a layer 2 switch forwarding based on a switch table 
that associates MAC addresses with switch ports. The 
switch is able to generate this table by listening to  
each incoming packet which, in turn, is transmitted 
according to the existing information in the table. 

 Load balancer: this application uses a round-robin 
algorithm to distribute requests addressed to a virtual IP 
(VIP) address on a set of servers. 

The different analyses of these applications and functions 
are described as follow. Figure 10, Figure 11 and Figure 12 
show the throughput over the time at the control plane when 
different OpenFlow and CCN flows are generated in the 
data plane. We captured this traffic for firewall, learning 
switch, and load balancing using Wireshark (Wireshark 
Analyzer, http://www.wireshark.org). 

When the firewall is executed, the OpenFlow packets 
are 16.26% and the data are 50% of the packets. For the 
learning switch, OpenFlow packets are 22.3% and the data 
exceed 60% of the packets. For the load balancing, the 
OpenFlow packets are 15% and the data is 51%. 

Figure 13 Comparison of the average delay between DSD-ICN 
and ODL (see online version for colours) 

 

Figure 14 Comparison of the CPU consumption (see online 
version for colours) 

 

We can deduce that the overhead of OpenFlow packets  
is acceptable over DSD-ICN architecture regarding the 
amount of the data forwarded. 

 

The importance and the effectiveness of DSD-ICN  
are represented by reducing the convergence time while 
maintaining a significant throughput as well as ensuring 
responsiveness to latency-sensitive applications. 

Afterwards, we conducted tests under the same 
conditions in order to compare our FL controllers to the 
OpenDay-light (ODL) (Medved et al., 2014) in term of 
delay and CPU consumption. The average delay between 
DSD-ICN and ODL is depicted in Figure 13 while the 
average results in percent of the CPU consumption are 
described in Figure 14 for the ‘bootstrapping’ phase as well 
as for the ‘control events’ phase. The ‘bootstrapping’ 
presents the phase where the controllers start and discover 
their neighbours. In this step, ODL controllers form a 
cluster after the start and share their database, while FL 
controllers use the ‘sync service’. In case of the ‘control 
events’ phase the controller is on production (i.e., insert 
rules). 

Results show that our extended FL outperforms ODL. 

6 Conclusions 

In this paper, we have proposed and evaluated DSD-ICN,  
an ICN network over SDN with multiple controllers. We 
tried to keep relevant network with a consistent network 
view that handles content on the basis of its name even over 
different domains. Our proposal provides strong consistency 
and fault-tolerance of the control plane. The main 
components of the proposed architecture are: 

1 ICN nodes composed of CCNx configured on top of 
OpenFlow switches with the adaptation layer providing 
the conformity between both paradigms. This method is 
characterised by simplicity and flexibility as it does not 
imposes extensions on either CCNx or OpenFlow. 

2 SDN controller handles ICN packets and provides 
optimised routing thanks to centralised intelligence. 

3 IIB enable synchronisation between different 
controllers. 

The shared aspect offers high speed data transmission and 
intelligent data processing. For future work, we plan to test 
DSD-ICN in larger networks as well as analysing load 
balancing and multipath selection features. 

References 

Amadeo, M., Campolo, C. and Molinaro, A. (2016)  
‘Information-centric networking for connected vehicles: a 
survey and future perspectives’, IEEE Communications 
Magazine, Vol. 54, No. 2, pp.98–104. 

Benamrane, F., Ben Mamoun, M. and Benaini, R. (2017)  
‘An east-west interface for distributed SDN control plane: 
implementation and evaluation’, Computers & Electrical 
Engineering, January, Vol. 57, pp.162–175. 

 

 



24 R. Jmal and L.C. Fourati  

Botelho, F., Ribeiro, T.A., Ferreira, P., Ramos, F.M. and  
Bessani, A. (2016) ‘Design and implementation of a 
consistent data store for a distributed SDN control plane’,  
in 2016 12th European Dependable Computing Conference 
(EDCC), pp.169–180. 

Chang, Y., Rezaei, A., Vamanan, B., Hasan, J., Rao, S.  
and Vijaykumar, T.N. (2016) Hydra: Leveraging  
Functional Slicing for Efficient Distributed SDN Controllers,  
arXiv preprint arXiv: 1609.07192. 

Deka, G.C. (2015) ‘BDS: browser dependent XSS sanitizer’, 
Handbook of Research on Securing Cloud-Based Databases 
with Biometric Applications, pp.174–191, IGI Global. 

Fu, S.H., Wen, H., Wu, J. and Wu, B. (2016) ‘Cross-networks 
energy efficiency tradeoff: from wired networks to wireless 
networks’, IEEE Access, June, Vol. 5, pp.15–26. 

Gao, S., Zeng, Y., Luo, H. and Zhang, H. (2016) ‘Scalable  
control plane for intra-domain communication in software 
defined information centric networking’, Future Generation 
Computer Systems, March, Vol. 56, pp.110–120. 

Gupta, B.B. (2018) Computer and Cyber Security: Principles, 
Algorithm, Applications, and Perspectives, p.666, CRC Press, 
Taylor & Francis. 

Gupta, B.B., Gupta, S. and Chaudhary, P. (2017) ‘Enhancing  
the browser-side context-aware sanitization of suspicious 
HTML5 code for halting the DOM-based XSS vulnerabilities 
in cloud’, International Journal of Cloud Applications and 
Computing (IJCAC), Vol. 7, No. 1, pp.1–31. 

Gupta, S. and Gupta, B.B. (2015) ‘PHP-sensor: a prototype 
method to discover workflow violation and XSS 
vulnerabilities in PHP web applications’, in Proceedings of 
the 12th ACM International Conference on Computing 
Frontiers, ACM, May, p.59. 

Huang, H., Guo, S., Wu, J. and Li, J. (2016) ‘Green  
DataPath for TCAM-based software-defined networks’, IEEE 
Communications Magazine, November, Vol. 54, No. 11, 
pp.194–201. 

Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F.,  
Briggs, N.H. and Braynard, R.L. (2009) ‘Networking named 
content’, Proceedings of the 5th International Conference on 
Emerging Networking Experiments and Technologies,  
pp.1–12. 

Jararweh, Y. et al. (2017) ‘Software-defined system support for 
enabling ubiquitous mobile edge computing’, The Computer 
Journal, Vol. 60, No. 10, pp.1443–1457. 

Jiang, F., Fu, Y., Gupta, B.B., Lou, F., Rho, S., Meng, F. and Tian, 
Z. (2018) ‘Deep learning based multi-channel intelligent 
attack detection for data security’, IEEE Transactions on 
Sustainable Computing, 1 April–June, Vol. 5, No. 2,  
pp.204–212, doi: 10.1109/TSUSC.2018.2793284. 

Jmal, R. and Fourati, L.C. (2017a) ‘An OpenFlow architecture  
for managing content-centric-network (OFAM-CCN) based 
on popularity caching strategy’, Computer Standards & 
Interfaces, Vol. 51, pp.22–29. 

Jmal, R. and Fourati, L.C. (2017b) ‘Content-centric networking 
management based-on software defined networks: survey’, 
IEEE Transactions on Network and Service Management, 
December, Vol. 14, No. 4, pp.1128–1142, doi: 10.1109/ 
TNSM.2017.2758681. 

Jmal, R. and Fourati, L.C. (2017c) ‘Emerging applications  
for future internet approach based-on SDN and ICN’,  
in 2017 IEEE/ACS 14th International Conference on 
Computer Systems and Applications (AICCSA), Hammamet, 
pp.208–213. 

Jmal, R. and Fourati, L.C. (2019) ‘Assisted DASH-aware 
networking over SDN-CCN architecture’, Photonic Network 
Communications, Vol. 38, No. 1, pp.37–50. 

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., 
Zhu, M. et al. (2010) ‘Onix: a distributed control platform  
for large-scale production networks’, in Proceedings of the 
9th USENIX Conference on Operating Systems Design and 
Implementation OSDI10, pp.1–6. 

Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., 
Azodolmolky, S. and Uhlig, S. (2015) ‘Software-defined 
networking: a comprehensive survey’, Proceedings of the 
IEEE, January, Vol. 103, No. 1, pp.14–76. 

Li, T., Gupta, B.B. and Metere, R. (2018) ‘Socially-conforming 
cooperative computation in cloud networks’, Journal of 
Parallel and Distributed Computing, Vol. 117, pp.274–280. 

Lin, P. et al. (2015) ‘A west-east bridge based SDN inter-domain 
testbed’, IEEE Communications Magazine, Vol. 53, No. 2, 
pp.190–197. 

Luo, H., Chen, Z., Cui, J., Zhang, H., Zukerman, M. and Qiao, C. 
(2014) ‘CoLoR: an information-centric internet architecture 
for innovations’, IEEE Network, Vol. 28, No. 3, pp.4–10. 

Maaloul, R., Taktak, R., Chaari, L. and Cousin, B. (2018)  
‘Energy-aware routing in carrier-grade ethernet using SDN 
approach’, IEEE Transactions on Green Communications and 
Networking, Vol. 2, No. 3, pp.844–858. 

Medved, J., Varga, R., Tkacik, A. and Gray, K. (2014) 
‘OpenDaylight: towards a model-driven SDN controller 
architecture’, in IEEE 15th International Symposium on 
World of Wireless, Mobile and Multimedia Networks 
WoWMoM, pp.1–6. 

Pfaff, B., Lantz, B., and Heller, B. (2012) Openflow Switch 
Specification, Version 1.3. 0, pp.39–46, Open Networking 
Foundation. 

Phemius, K., Bouet, M. and Leguay, J. (2014) ‘Disco: distributed 
multi-domain SDN controllers’, in 2014 IEEE Network 
Operations and Management Symposium (NOMS), pp.1–4. 

Schiff, L., Schmid, S. and Kuznetsov, P. (2016) ‘In-band 
synchronization for distributed SDN control planes’, ACM 
SIGCOMM Computer Communication Review, Vol. 46,  
No. 1, pp.37–43. 

Smetters, D., Golle, P. and Thornton, J. (2010) CCNx Access 
Control Specifications, Technical Report, PARC, Tech. Rep. 

Stoller, S.D. (1997) Leader Election in Distributed Systems with 
Crash Failures, Technical Report, Indiana University, April, 
Vol. 169. 

Stribling, J., Sovran, Y., Zhang, I., Pretzer, X., Li, J.,  
Kaashoek, M.F. et al. (2009) ‘Flexible, wide-area storage for 
distributed systems with WheelFS’, in Proceedings of the  
6th USENIX Symposium on Networked Systems Design and 
Implementation NSDI09, pp.43–58. 

Tarkoma, S. (2012) Publish/Subscribe Systems: Design and 
Principles, John Wiley & Sons. 

Tootoonchian, A. and Ganjali, Y. (2010) ‘HyperFlow: a distributed 
control plane for OpenFlow’, in Proceedings of the Internet 
Network Management Conference on Research on Enterprise 
Networking, p.3. 

Vasilakos, A.V., Li, Z., Simon, G. and You, W. (2015) 
‘Information centric network: research challenges and 
opportunities’, Journal of Network and Computer 
Applications, June, Vol. 52,  pp.1–10. 

Wireshark Analyzer [online] http://www.wireshark.org. 



 Distributed software defined information centric networking 25 

Wu, J. et al. (2018) ‘Information and communications technologies 
for sustainable development goals: state-of-the-art, needs and 
perspectives’, IEEE Communications Surveys & Tutorials, 
March, Vol. 20, No. 3, pp.2389–2406. 

Yeganeh, S.H. and Ganjali, Y. (2012) ‘Kandoo: a framework for 
efficient and scalable offloading of control applications’, in 
Proceedings of the First Workshop on Hot Topics in Software 
Defined Networks, pp.19–24. 

Yeganeh, S.H. and Ganjali, Y. (2016) ‘Beehive: simple distributed 
programming in software-defined networks’, in Proceedings 
of the Symposium on SDN Research, ACM, pp.1–12. 

Yin, H., Xie, H., Tsou, T., Lopez, D., Aranda, P. and Sidi, R. 
(2012) SDNi: a Message Exchange Protocol for Software 
Defined Networks (SDNs) across Multiple Domains,  
IETF draft, work in progress. 

Websites 

http://mininet.org/ (accessed 2017). 

http://www.projectfloodlight.org/floodlight/ (accessed 2017). 


