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Abstract: Surface electromyographic (sEMG) signal is commonly used as main input 
information to control robotic prosthetic systems. sEMG signals vary from person to person; 
gender is a factor influencing this variation. Thus, the aim of the study is to detect gender-related 
differences in sEMG activity of two main ankle-flexor muscles [tibialis anterior (TA) and 
gastrocnemius lateralis (GL)] during walking at comfortable speed and cadence. Statistical 
analysis of sEMG signals, performed in seven male (M-group) and seven female (F-group) 
adults, showed clear gender-related differences in muscle behaviour. The assessment of the 
different activation modalities, indeed, allowed to detect that F-group adopts a walking modality 
with a higher number of activations during gait cycle, compared to M-group. This suggests a 
female propensity for a more complex muscle recruitment, during walking. This novel 
information suggests considering a separate approach for males and females, in providing 
electromyographic signals as input information to control robotic systems. 

Keywords: surface EMG; statistical gait analysis; gender; ankle motion; shank muscles; tibialis 
anterior; gastrocnemius lateralis; walking; gait cycle; modalities of muscle activation; 
myoelectric activity. 

Reference to this paper should be made as follows: Di Nardo, F., Mengarelli, A., Maranesi, E., 
Burattini, L. and Fioretti, S. (2020) ‘Gender-related differences in ankle-muscles recruitment 
during walking’, Int. J. Biomechatronics and Biomedical Robotics, Vol. 3, No. 4, pp.197–206. 

Biographical notes: Francesco Di Nardo is currently a Staff Scientist at the Movement Analysis 
and Bioengineering Lab (LAMB), Department of Information Engineering, Università 
Politecnica delle Marche, Ancona, Italy. He teaches the class of models and control of biological 
systems in Master’s in Biomedical Engineering, Università Politecnica delle Marche. He 
received his PhD in Artificial Intelligence Systems, in 2005 at the Università Politecnica delle 
Marche, Italy. His main research activity includes the field of movement analysis for motor  
 
 
 
 
 



198 F. Di Nardo et al.  

rehabilitation, with particular involvement in acquisition and processing of surface 
electromyography signal to assess the muscular function during gait task. He is also involved in 
the development and the clinical application (type-2 diabetes, insulin resistance and 
hypertension) of mathematical models of metabolic and endocrine systems in humans and in 
their animal models. He participated in various national research projects. He published several 
papers in peer review international journals, books and conference proceedings. 

Alessandro Mengarelli received his MSc in Biomedical Engineering and PhD degree in 
Information Engineering from the Università Politecnica delle Marche, Ancona, Italy, in 2012 
and 2017, respectively. Currently, his research interests involve the assessment of muscular 
functions during gait through the electromyography signal processing and the application of 
control theory and modelling to the analysis of balance in perturbed conditions, with a  
multi-body dynamic approach. In these fields, he authored/co-authored scientific publications in 
international journals and conference proceedings. 

Elvira Maranesi received her PhD in Biomedical Engineering from the Università Politecnica 
delle Marche, Ancona, Italy in 2013. Currently, she is Post-doctoral researcher with the 
Department of Information Engineering, Università Politecnica delle Marche and collaborates 
with the Posture and Movement Analysis Laboratory at the Italian National Institute of Health 
and Science on Aging. Furthermore she is a charter member of BMED SRL, academic spin-off 
of Università Politecnica delle Marche. Her main research interests include the 
electromyographic signal processing and the movement analysis during static and dynamic 
postural tests to evaluate the risk of falls in the elderly. In this field, she is author of scientific 
publications in international journals and congress proceedings. 

Laura Burattini is currently an Assistant Professor of Biomedical Engineering at the Polytechnic 
University of Marche, where she teaches the classes of biomedical engineering and biomedical 
signal and data processing, and President and CEO of BMED SRL, academic spinoff she 
founded herself. She graduated in Electrical/Biomedical Engineering at the Politecnico di 
Milano, Italy, in 1993 and took the PhD at the University of Rochester, USA, in 1998. Then, 
returned in Italy, she matured extensive working experience in both academic and corporate. Her 
main research interest includes the biomedical signal processing. She is author of numerous 
scientific publications in international journals, books and congress proceedings. 

Sandro Fioretti graduated in Electronic Engineering in year 1979 at the Ancona University and 
presently an Associate Professor in Bioengineering at the Department of Information 
Engineering-Università Politecnica delle Marche–Ancona. He teaches movement biomechanics 
and bioengineering of motor rehabilitation at the biomedical engineering course of the same 
university. His main research interests are in the field of human movement analysis and its 
related fields such as: stereophotogrammetry, linear and nonlinear filtering, joint kinematics, 
analysis and identification of postural control, static and perturbed posturography, gait analysis, 
dynamic electromyography. He participated in various European and national research projects in 
the field of movement analysis for motor rehabilitation. He is author of numerous scientific 
publications in international journals, books and congress proceedings. 

This paper is a revised and expanded version of a paper entitled ‘Influence of gender on the 
myoelectric signal of shank muscles’ presented at IEEE/ASME International Conference on 
Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Ancona, Italy,  
10–12 September 2014. 

 

1 Introduction 

Electromyographic (EMG) signal of human muscles is an 
important biological signal to understand the motion 
intention of human (Jordanić et al., 2016). Recently, the 
EMG signals have been used as the input information to 
control robotic prosthetic systems, being considered 
fundamental information to understand how the user intends 
to move (Lu et al., 2016; Tang et al., 2014). Indeed, these 
power-assist robotic systems are mainly activated based on 
the user’s EMG signals which directly reflect the muscle  
 
 

activity levels of the user. Many examples of EMG-driven 
control robotic systems have been reported in literature 
(Kiguchi and Hayashi, 2012; Li et al., 2014; Tang et al., 
2014). 

The pattern recognition of EMG signal has been used 
for estimating the torque applied by a human wrist and its 
real-time implementation to control a novel two degree of 
freedom wrist exoskeleton prototype (WEP) (Khokhar et al., 
2010). A control algorithm for single degree-of-freedom 
powered exoskeleton has been proposed, to be used in the  
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process of physiotherapy and rehabilitation of the human 
upper limb (Mikulski, 2011). Proposed algorithm used 
EMG signals from single muscles as well as antagonist 
muscle pairs, to maximise the user’s intuitive control over 
the exoskeleton system. He and Kiguchi (2007) and He  
et al. (2007) proposed a control system based on the skin 
surface EMG (SEMG) signals of the user for the 
exoskeleton robot to assist physically weak person's lower-
limb motions. The skin surface EMG signals are mainly 
used as the input information for the controller. 

EMG signals from ankle muscles seem to be frequently 
used as the main input information to EMG-driven control 
robotic systems. Zhen et al. (2007) presented a study on 
human ankle movement based on SEMG signals. Four types 
of movement were designed including maximum voluntary 
contraction, bending/extending, going down, and walking. 
At a later stage, the same group of researchers proposed a 
control method of an exoskeletal ankle based on SEMG 
signals has been presented in Zhen et al. (2008). The SEMG 
signals are acquired, and sent to the computer. The 
computer deals with the SEMG signals and generates the 
control orders. The control orders are passed to the motor 
controller which drives the exoskeleton to move. Two 
further control schemes to predict the amputee’s intended 
ankle position using EMG data measured from an amputee 
for several target ankle movement patterns have been 
reported: a neural-network approach and a muscle model 
approach (Au et al., 2005). The authors found that both 
controllers demonstrate the ability to predict desired ankle 
movement patterns qualitatively. Ferris and Lewis (2009) 
developed pneumatically-powered lower limb exoskeletons 
for human physiology, and re-training motor deficiencies. 
One way to control the exoskeletons is with proportional 
myoelectric control, effectively increasing the strength of 
the wearer with a physiological mode of control. Healthy 
human subjects quickly adapt to walking with the robotic 
ankle exoskeletons, reducing their overall energy 
expenditure. Individuals with incomplete spinal cord injury 
have demonstrated rapid modification of muscle recruitment 
patterns with practice, walking with the ankle exoskeletons. 

The EMG signals can be classified into two types, 
according with the place where they are acquired. The EMG 
signals detected from inside of the muscles are called 
intramuscular EMG, whereas EMG signals detected from 
the skin surface of the muscles are called SEMG. The 
extraction of intramuscular EMG signals is invasive and 
non-painless procedure; for these reasons, the intramuscular 
EMG signals are difficult to use practically. On the other 
hand, the SEMG signal can be extracted easily and 
painlessly, even if it is not so selective as the intramuscular 
one. User’s SEMG is commonly used as main input 
information to the controller of exoskeleton robot to realise 
different fundamental applications, such as power-assist 
device, human-amplifier, rehabilitation device, and haptic 
interface (Khokhar et al., 2010; Zhen et al., 2007, 2008). 

 
 
 

The EMG signals vary from person to person and from 
motor task to motor task. In addition, they differ for the 
same motion even within the same person. In particular, it 
has been shown that gender is one of the factors influencing 
the occurrence of the SEMG signal in different motor tasks 
(Malinzak et al., 2001) and during walking (Chiu and 
Wang, 2007; Chumanov et al., 2008; Chung and Wang, 
2010). Therefore, characteristics of the SEMG signals 
should be carefully considered when developing a control 
method for exoskeleton robot or powered orthosis using 
EMG signals as input information. In some of these studies 
during walking, it has been detected a significantly higher 
activity of ankle muscles in the female population, 
compared to male one, especially in the tibialis anterior 
(TA) (Chiu and Wang, 2007; Chung and Wang, 2010). TA, 
together with gastrocnemius and soleus, are the main 
muscle that actuates the dorsiflexion and the plantarflexion 
motion of human ankle joint (Perry, 1992). 

The purpose of this study was to evaluate the possible 
differences between males and females in the SEMG 
activity of TA during gait at comfortable speed and 
cadence, in terms of the frequency of muscle occurrence. 
Eventual differences in the myoelectric activity of 
gastrocnemius lateralis (GL), (TA antagonist muscle for 
ankle plantar/dorsiflexion) were also analysed, in order to 
achieve more complete information on ankle joint. The goal 
of this study was pursued by performing a statistical 
analysis of SEMG signal from a large number (hundreds) of 
strides per subject. Surface electromyography has been 
largely used for the assessment of the activation patterns of 
the ankle flexor muscles during normal and pathological 
gait (Di Nardo et al., 2013; Stewart et al., 2007). Moreover, 
the study is based on the recent availability of robust 
techniques for the detection of muscle activation intervals 
(Bonato et al., 1998; Staude et al., 2001), and specific tools 
for statistical analysis of walking (Agostini and Knaflitz, 
2012). 

2 Materials and methods 

2.1 Subjects 

Fourteen healthy adult Caucasian volunteers were recruited 
for the present study. Subjects were divided into two 
groups: a group of seven female subjects (F-group) and a 
group of seven male subjects (M-group). Mean (±SD) 
characteristics of the patients are: age = 23.3 ± 1.3 years; 
height = 164 ± 3 cm; weight = 50.4 ± 2.0 kg; body mass 
index (BMI) = 18.8 ± 0.7 kg∙m–2, for the F-group, and age = 
24.5 ± 3.0 years; height = 183 ± 7 cm; weight = 79.4 ± 10.5 
kg; BMI = 22.2 ± 1.8 kg∙m–2, for the M-group. Walking 
velocity resulted 1.17 ± 0.05 m/s and 1.25 ± 0.11 m/s for M 
and F group respectively. Height, weight and BMI resulted 
significantly different between the two groups (p < 0.05), 
reflecting physiological differences between genders, while  
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age and velocity were not statistically different (p > 0.05), 
excluding the possible bias due to the different speed of gait 
on the muscular recruitment and myoelectric activity (den 
Otter et al., 2004). The SEMG activity during gait was 
recorded in both right and left lower limbs of all subjects at 
comfortable speed and cadence. Exclusion criteria included 
history of neurological pathology, orthopedic surgery within 
the previous year, acute or chronic knee pain or pathology, 
BMI ≥ 25, or abnormal gait. Abnormal gait was determined 
observationally by a licensed physical therapist, specialised 
in gait analysis. Before the beginning of the test, all 
participants signed an informed consent. 

2.2 Recording system: signal acquisition 

Signals were acquired by means of a multichannel recording 
system for statistical gait analysis (Step32, DemItalia, Italy). 
Step32 system allows the acquisition of up to 16 signals, 
performing a gait partition and myoelectric signal 
processing and analysis oriented to the identification of 
muscular activation/deactivation sequences. Step32 is able 
to acquire and analyse EMG signals belonging to hundreds 
of consecutive strides, with a statistical evaluation of the 
muscular activity during the entire walking trial. Each 
subject was instrumented with foot-switches, electro-
goniometers and SEMG probes, cable-connected with the 
acquisition system. Three foot-switches (Step32, DemItalia, 
Italy) were applied beneath the heel, the first and the fifth 
metatarsal heads of each foot. An electro-goniometer 
(Step32, DemItalia, Italy, accuracy: 0.5 deg) was applied to 
the lateral side of each lower limb for measuring the knee 
joint angles in the sagittal plane. Single differential SEMG 
probes with fixed geometry constituted by Ag/Ag-Cl disks 
(manufacturer: DemItalia, size: 7 × 27 × 19 mm; electrode 
diameter: 4 mm; interelectrode distance: 8 mm, gain: 1000, 
high-pass filter: 10 Hz, input impedance > 1,5 GΩ, CMRR 
> 126 dB, input referred noise ≤ 1 µVrms) were applied over 
the TA and GL of each lower limb following the SENIAM 
recommendations for electrode location and orientation over 
muscle with respect to tendons, motor point and fibre 
direction (Freriks et al., 1999). Participant setup is shown in 
Figure 1. Before positioning the probes, the skin was 
shaved, cleaned with abrasive paste and then wet with a 
soaked cloth. To assure proper electrode-skin contact, 
electrodes were dressed with highly-conductive gel. After 
positioning the sensors, subjects were instructed to walk 
barefoot over ground for around four minutes at their 
natural pace, following the path schematised in Figure 2 (Di 
Nardo and Fioretti, 2013). Natural pace was chosen because 
walking at a comfortable speed improves the repeatability 
of SEMG data, while variability increases when subjects are 
required to walk abnormally (Kadaba et al., 1989). The 
possibility of cross-talk was checked for by visual 
inspection of raw data. In order to avoid inter-operator 
variability, cross-talk checking was made by the same 
operator, expert in the field of EMG data acquisition and 
interpretation. Cross-talk was suspected when two muscles 
in the same limb section showed simultaneous activity with 
similar amplitude modulation. 

Figure 1 Participant set-up. three foot-switches were applied 
beneath the heel, the first and the fifth metatarsal heads 
of each foot 

 

Notes: An electro-goniometer was applied to the lateral 
side of each lower limb for measuring the knee 
joint angles in the sagittal plane. Two single 
differential SEMG probes with fixed geometry 
were applied over the TA and GL of each lower 
limb following the SENIAM recommendations 

Figure 2 Schematic representation of the path walked by the 
recruited subjects during the experiment; subjects 
walked barefoot over the floor for four minutes at their 
natural pace 

 

2.3 Signal processing 

Foot-switch signals were converted to four levels. 
Corresponding to heel contact (H), flat foot contact (F), 
push off (P), swing (S), according with what has been 
reported in Agostini et al. (2014) and in order to maintain 
the accuracy of gait phases detection, avoiding an excessive 
granularity of the gait cycle (Taborri et al., 2016). During 
acceleration, deceleration, and changes in direction the 
strides are different from those of steady state walking. 
Therefore, the knee joint angles in the sagittal plane  
(low-pass filtered with cut-off frequency of 15 Hz) along 
with gait phase durations, were used by a multivariate 
statistical filter embedded in the Step32 system, to detect 
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and discard outlier cycles, i.e., cycles with the proper 
sequence of gait phases (H-F-P-S) but with abnormal 
timing, like those relative to deceleration, reversing, and 
acceleration (Agostini and Knaflitz, 2012). SEMG signals 
were high-pass filtered (cut-off frequency of 20 Hz) and 
processed by a double-threshold statistical detector, 
embedded in the Step32 system, that provides the onset and 
offset time instants of muscle activity in a completely  
user-independent way (Bonato et al., 1998). This technique 
(Bonato et al., 1998) consists of selecting a first threshold ζ 
and observing m successive samples: if at least r0 out of 
successive m samples are above the first threshold ζ, the 
presence of the signal is acknowledged. In this approach, 
the second threshold is represented by r0. Thus, the 
behaviour of the double-threshold detector is fixed by three 
parameters: the first threshold ζ, the second threshold r0, 
and the length of the observation window m. Their values 
are selected to jointly minimise the value of false-alarm 
probability and maximise probability of detection for each 
specific signal-to-noise ratio. The setting of the first 
threshold, ζ, is based on the assessment of the background 
noise level, as a necessary input parameter. Furthermore, the 
double-threshold detector requires to estimate the  
signal-to-noise ratio in order to fine tune the second 
threshold, r0. The values of the background noise level and 
the signal-to-noise ratio, necessary to run double-threshold 
algorithm, is estimated for each signal by Step32 system, 
using the statistical approach proposed by Agostini and 
Knaflitz (2012). The length duration of the observation 
window, m, of 30 ms is considered a suitable value for the 
study of muscle activation in gait analysis (Bonato et al., 
1998). 

Considering the non-invasiveness of the surface 
electromyography technique and the experimental setup 
described earlier, subjects performed walking trials in a  
full-physiological way, allowing to refer the final outcomes 
to a real situation. 

During gait, a muscle activates a number of times which 
is usually variable from cycle to cycle (Agostini and 
Knaflitz, 2012). Thus, muscle on/off instants should be 
averaged considering each single modality of activation by 
itself. With modality of activation we mean the number of 
times when muscle activates during a single gait cycle, i.e., 
n-activation modality consists of n activation intervals for 
the considered muscle, during a single gait cycle. In the 
present study, mean activation intervals (normalised with 
respect to the gait cycle) for each modality of activation 
were achieved by means of the Step32 system, according 
with the following steps. First, muscle activations relative to 
each gait cycle were identified. Then, for all the gait cycles 
corresponding to straight line walking, muscle activations 
were grouped according with the number of activations 
detected, i.e., relatively to the modalities of activations 
detected. Finally, the on/off time instants were averaged, for 
each specific modality of activation observed and relative 
standard deviation (SD) and standard error were computed.  
 
 

In the present study, only gait cycles consisting of the 
proper sequence of gait phases of (H-F-P-S) were 
considered. 

2.4 Statistics 

Data are reported as mean ±SD with data from right and left 
lower limb considered all together. The Lilliefors test 
(suitable for small samples) was used to evaluate the 
hypothesis that each data vector or parameter vector had a 
normal distribution with unspecified mean and variance 
(Lilliefors, 1967). Comparisons among normally distributed 
samples were performed with two-tailed, non-paired 
Student’s t test while Mann-Whitney U-test was used to 
compare not-normally distributed samples. For normally-
distributed samples, the analysis of variance (ANOVA) was 
used to compare different activation modalities within each 
group, whereas for not-normally distributed samples 
Kruskal-Wallis test was employed. ANOVA and  
Kruskal-Wallis were both followed by multiple comparison 
test, according with Tukey’s procedure. Statistical 
significance was set at 5% level for every test used in the 
present study. 

3 Results 

Mean (±SD) characteristics of the gait cycle are the 
following. For the F-group: gait cadence = 58.4 ± 2.7 
cycle/minute; gait speed = 1.16 ± 0.10 m/s; duration of gait 
cycle = 1.05 ± 0.05 s; length of single support phase 
(expressed in percentage of gait cycle) = 42.9% ± 2.7%, 
length of double support phase (expressed in percentage of 
gait cycle) = 14.1% ± 5.2%, length of stance phase 
(expressed in percentage of gait cycle) = 57.1% ± 2.7 %, 
length of stance phase (expressed in percentage of gait 
cycle) = 42.9% ± 2.8%. For the M-group: gait cadence = 
53.5 ± 2.7 cycle/minute; gait speed = 1.19 ± 0. 09 m/s; 
duration of gait cycle = 1.13 ± 0.07 s; length of single 
support phase (expressed in percentage of gait cycle) = 
43.8% ± 2.2%, length of double support phase (expressed in 
percentage of gait cycle) = 12.4% ± 2.8%, length of stance 
phase (expressed in percentage of gait cycle) = 56.2%  
± 2.2%, length of stance phase (expressed in percentage of 
gait cycle) = 43.8% ± 2.2%. No significant differences (p > 
0.05) between F and M groups were detected in all 
variables, except for cadence that was significantly higher 
(p < 0.05) in F-group. 

The present study compared M and F groups in terms of 
the frequency each modality of muscle activation occurs 
with, quantified by the number of strides (%), over the total 
subjects, where the muscle is recruited with the specific 
modality of activation. To clarify the meaning of modality 
of activation, an example of SEMG signals from GL and 
TA muscles of a single subject have been reported in 
Figures 3 and 4, respectively. 
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Figure 3 Example of SEMG signals from GL acquired in the 
same subject, from different strides of the same 
walking trial 

 

(a) 

 

(b) 

 

(c) 

Notes: In panel A, GL shows one activation  
(1-activation modality), in panel B, GL shows 
two activations (2-activation modality) and in 
panel C, GL shows three activations  
(3-activation modality). Heel contact (H), flat 
foot contact (F), push off (P) and swing (S) 
phases are delimited by dashed light-gray vertical 
lines. 

In the matter of GL, the most recurrent modality of 
activation (Figure 5) consists of two activations  
(2-activation modality) for the F-group (observed in 39.3% 
± 9.8% of the total strides) and of one single activation  
(1-activation modality) for the M-group (observed in 48.3% 
± 16.8% of the strides). The second most recurrent modality 
of activation consists of three activations (3-activation 
modality) for the F-group (observed in 36.4% ± 9.4% of the 
total strides) and of two activations (2-activation modality) 
for the M-group (observed in 34.1% ± 9.7% of the strides). 
Finally, the less recurrent modality of activation consists of  
 
 
 

one activation (1-activation modality) for the F-group 
(observed in 10.1% ± 6.2% of the total strides) and of three 
activations (3-activation modality) for the M-group 
(observed in 13.35 ± 6.1% of the strides). Compared with  
F-group, M-group presented, on average, a significantly 
higher (p < 0.001) frequency of occurrence in the  
1-activation modality and a significantly lower frequency of 
occurrence in the 3-activation modality (p < 0.001). No 
significant differences were detected between the two 
groups in the 2-activation modality (Figure 5). 

Figure 4 Example of SEMG signals from TA acquired in the 
same subject, from different strides of the same 
walking trial 

 

(a) 

 

(b) 

 

(c) 

Notes: In panel A, TA shows two activations  
(2-activation modality), in panel B, TA shows 
three activations (3-activation modality) and in 
panel C, TA shows four activations  
(4-activation modality). Heel contact (H), flat 
foot contact (F), push off (P) and swing (S) 
phases are delimited by dashed light-gray vertical 
lines. 
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Figure 5 Averaged (+SD) frequency of occurrence of the three 
main modalities of activation detected during walking 
trial for GL 

 

Notes: Data are expressed in percentage of total strides. 
Grey bars represent the frequency of muscle 
occurrence in the F-group and the white bars 
represent the frequency of muscle occurrence in 
the M-group. *Indicates that differences between 
F and M groups are statistically significant. 

Figure 6 Averaged (+SD) frequency of occurrence of the three 
main modalities of activation detected during walking 
trial for TA 

 

Notes: Data are expressed in percentage of total strides. 
Grey bars represent the frequency of muscle 
occurrence in the F-group and the white bars 
represent the frequency of muscle occurrence in 
the M-group. *Indicates that differences between 
F and M groups are statistically significant. 

In the matter of TA, the most recurrent modality of 
activation (Figure 6) consists of three activations  
(3-activation modality) for the F-group (observed in 42.7% 
± 7.8% of the total strides) and of two activations  
(2-activation modality) for the M-group (observed in 40.4% 
± 21.5% of the strides). The second most recurrent modality 
of activation consists of four activations (4-activation 
modality) for the F-group (observed in 29.5% ± 5.4% of the 
total strides) and of three activations (3-activation modality) 
for the M-group (observed in 35.1% ± 10.4% of the strides). 
Finally, the less recurrent modality of activation consists of 
two activations (2-activation modality) for the F-group 
(observed in 13.4% ± 6.9% of the total strides) and of four 

activations (4-activation modality) for the M-group 
(observed in 16.2% ± 11.3% of the strides). Compared with 
F-group, M-group showed, on average, a significantly 
higher (p < 0.01) frequency of occurrence in the  
2-activation modality and a significantly lower frequency of 
occurrence in the 4-activation modality (p < 0.01). No 
significant differences were detected between the two 
groups in the 3-activation modality (Figure 6). Since the 
strides where GL showed 1, 2 and 3-activation modalities 
and TA showed 2, 3 and 4-activation modalities cover the 
90 % of total strides, we limited our analysis to these three 
main modalities of activation. 

The mean results are reported with data from right and 
left lower limb considered all together. 

4 Discussions 

The aim of the present study was to evaluate possible 
differences between males and females in the EMG activity 
of TA and GL, during gait. Compared to females, males 
showed a significant lower mean cadence during the 
walking trial; despite these differences, females and males 
are keeping the same comfortable speed and cycle duration 
(see Section 3). In percentage, also the stance phase, the 
swing phase, and the period of single support vs. double 
support remained unaltered between the two populations. 
Thus, the full picture of gait temporal parameter suggests no 
significant differences between male and female way of 
walking. These results agree with what was reported in 
previous studies (Kerrigan et al., 1998; Oberg et al., 1993). 

The present statistical analysis put into evidence that 
both GL and TA show different activation modalities, i.e., 
different number of activations, in different strides of the 
same walking trial. This has been observed for both female 
and male populations. Variability in the modalities of ankle 
muscles activation was reported also in previous works in 
healthy adults (Di Nardo et al., 2013, 2014, Di Nardo and 
Fioretti, 2014) and in school-age children (Agostini et al., 
2010). 

The first relevant difference detected in the SEMG 
signal between F and M groups lies in the identification of 
the most recurrent modality of activation for both GL and 
TA (Figures 5 and 6); females show a preference towards 
more complex modalities (2 and 3-activation modality for 
GL and TA, respectively), compared with males (1 and  
2-activation modality for GL and TA, respectively). In the 
identification of the less recurrent modality of activation, a 
similar behaviour has been observed: in females, the less 
frequent modality of activation coincides with the simplest 
one, for both GL (1-activation modality) and TA  
(2-activation modality); in males, the less frequent modality 
of activation coincides with the most elaborate one, for both 
GL (3-activation modality) and TA (4-activation modality). 
The female preference for walking with more complex 
modalities of activation, with respect to male, is supported 
by the following further considerations. In the M-group, the 
simplest activation modalities are also the most recurrent 
ones, for both GL (1-activation modality) and TA ( 
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2-activation modality); moreover, it has been observed a 
gradual decrease of the frequency of occurrence with the 
increase of the complexity in the modalities of activation, 
for both GL and TA (white bars in Figures 5 and 6). In the 
F-group, the simplest activation modality occurs in a low 
percentage of strides (around 10%, for both GL and TA); 
moreover, both 2 and 3-activation modalities for GL are 
more recurrent than the 1-activation modality (the simplest 
one) and both 3 and 4-activation modalities for TA are more 
recurrent than the 2-activation modality (the simplest one). 
Also the direct comparison between the two groups supports 
the hypothesis of a preference of subjects from F-group for 
walking with more complex modalities of activation, with 
respect to M-group (Figures 5 and 6): the F-group, 
compared with M-group, shows a significantly higher 
frequency of occurrence in the modalities with an elevated 
number of activations (three, activations for GL and four 
activations for TA), and a significantly lower mean value of 
the occurrence frequency in the modalities with a low 
number of activations (one activation for GL and two 
activations for TA). 

Thus, the concomitant occurrence of all these findings 
indicates a propensity of the females for adopting the 
modalities of activation with higher number of activation 
intervals, compared to the males. This suggests a more 
complex recruitment of TA and GL for females, during 
normal walking. Despite gender-related differences have 
been already reported in some motor tasks, such as landing 
(Decker et al., 2003; Gehring et al., 2009) and running 
(Ferber et al., 2003), to authors knowledge this study is the 
first in proposing the occurrence frequency as a suitable 
parameter which can mirror the role of gender in ankle-
muscles myoelectric activity during a day-life task as the 
walking. The importance of these findings consists in 
demonstrating the necessity of a separate approach for 
males and females, in the utilisation of SEMG signals into 
gait analysis and for clinical and research studies. The 
importance of a separate approach increases when SEMG 
signals are provided as main input information to the 
controller of robotic systems, such as exoskeleton robot and 
powered orthosis. Moreover, the present findings can result 
particularly useful in clinical contexts, where EMG-driven 
devices are often employed for rehabilitation therapies from 
spinal cord injury (Del-Ama et al., 2012), stroke (Song  
et al., 2008), tremor (Rocon et al., 2007) and to regain the 
dexterity of upper and lower limb joints (Ho et al., 2011). 
Such devices are also employed for treatment of healthy 
subjects (Rosen et al., 2007). Telerobotics and computer 
vision application of these findings could be also considered 
(Avgousti et al., 2016). 

Despite the accuracy of the methodology and the 
reliability of the results achieved, a limitation of the study 
can be found in the limited sample of the recruited subjects, 
in particular when the outcomes of the statistical analysis 
are evaluated. 

5 Conclusions 

The statistical analysis performed in the present study 
showed clear gender-related differences in the myoelectric 
activity of TA and GL, during gait at comfortable speed and 
cadence, in terms of their frequency of occurrence. The 
concurrence of many factors, such as a higher frequency of 
occurrence in the modalities with an elevated number of 
activations and a concomitant lower mean occurrence 
frequency in the modalities with a low number of 
activations in females, indicates a propensity of the female 
for a more complex recruitment of the muscles during gait. 

This information suggests considering a separate 
approach for males and females, in providing EMG signals 
as main input information to the controller of exoskeleton 
robot and powered orthosis. 
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