

 324 Int. J. Adaptive and Innovative Systems, Vol. 2, No. 4, 2019

 Copyright © 2019 Inderscience Enterprises Ltd.

A chain membrane model with application in
cluster analysis

Yuzhen Zhao, Xiyu Liu* and Wenxing Sun
College of Business,
Shandong Normal University,
Jinan, 250014, China
Email: zhaoyuzhen_happy@126.com
Email: sdxyliu@163.com
Email: 373253360@qq.com
*Corresponding author

Abstract: Membrane computing is a kind of bio-inspired parallel distributed
computing paradigm which can reduce computational complexity by the
strategy of a space-time tradeoff. Traditionally, there are three kinds of
membrane computing models (P systems) based on the tree and the graph
topological structures. In this paper, a new P system with chain topological
structure is proposed which is called the chain P systems. In the chain
P systems, membranes, objects and rules are all in the form of chains which can
store more information and therefore further improve the computational
efficiency. The computational power and efficiency of the chain P systems are
analysed. The graph clustering and the ROCK clustering algorithms based on
the chain P systems are given as applications.

Keywords: membrane computing; membrane model; chain P system;
computational power; computational efficiency; ROCK clustering; graph
clustering.

Reference to this paper should be made as follows: Zhao, Y., Liu, X. and
Sun, W. (2019) ‘A chain membrane model with application in cluster analysis’,
Int. J. Adaptive and Innovative Systems, Vol. 2, No. 4, pp.324–348.

Biographical notes: Yuzhen Zhao received her PhD in Management Science
from Shandong Normal University, China. She is a Lecturer, and the Master
Supervisor of Business School, Shandong Normal University. Her research
interests include membrane computing and data mining.

Xiyu Liu received his PhD in Mathematical Sciences from Shandong
University. He is a Professor, the Doctorial Supervisor, and the President of
Business School, Shandong Normal University. His research interests include
membrane computing and data mining.

Wenxing Sun received his BS in Physics from Shandong Normal University,
China. He is an Associate Professor of Demission-Retirement Affair Office,
Shandong Normal University. His research interests include membrane
computing and data mining.

 A chain membrane model with application in cluster analysis 325

1 Introduction

Biological systems, such as cells, tissues, and human brains, have deep computational
intelligences. Biologically inspired computing, or bio-inspired computing in short,
focuses on abstracting computing ideas from biological systems to construct computing
models and algorithms. Membrane computing is a lately initiated research area of
bio-inspired computing in 2002, which seeks to discover new computational facility from
the dynamics of cells, particularly of the cellular membranes (Păun et al., 2010). The new
models are distributed and parallel bio-inspired computing facilities, usually called
P systems. There are three mainly investigated P systems, cell-like P systems, tissue
P systems, and neural-like P systems (and their variants, see, e.g., Cabarle et al., 2017;
Zeng et al., 2014; Song and Wang, 2015; Song et al., 2016; Song and Pan, 2015; Zeng
et al., 2009; Zhang et al., 2014a, 2014b; Peng et al., 2017; Zhao et al., 2016; Liu et al.,
2018; Song et al., 2019a, 2017). It has been proved that many P systems are universal,
that is, they are able to do what a Turing machine can do efficiently (Song et al., 2019b;
Wang et al., 2016; Zeng et al., 2014; Zhang et al., 2017). The parallel evolution
mechanism of variants of P systems has been found to perform well in doing
computation, even solving computational hard problems. Therefore, P systems have been
introduced to many fields gradually (Wang et al., 2019a; Ju et al., 2016; Liu et al., 2015a;
Liu et al., 2017; Liu and Xue, 2017; Wang et al., 2019b).

Researchers pay close attention to the computational efficiency of P systems,
especially the judgment whether NP-complete problems have solutions or not in feasible
time (Song et al., 2014a, 2014b; Pan et al., 2011; Wang et al., 2011). In previous studies,
if a NP-complete problem has a solution, a specific object is output to show that;
otherwise, another object or nothing is output to show that. However, the solutions need
to be found out in many situations. For instance, the register allocation problem is an
application of SAT problem. This problem aims to build a mapping relationship between
the virtual registers and the physical registers, and realises the rational utilisation of
physical register resources. In this case, we need to judge whether a good solution exists,
while searching the solution by distributing the physical register resources according to
the solution. In applications, many problems can be transformed into graph colouring
problems, which is equivalent to SAT problems. To solve these problems, exact solutions
are also essential.

For this purpose, the chain thought in DNA computing is introduced into the
P systems and a new variant of P systems called the chain P system is proposed in this
paper. In the chain P systems, the concepts of membranes, objects and rules are expended
to chains, and the operations of crossover, mutation and so forth are transplanted. The
chain P systems can record more information and realise the same function with less
computing resources. Each chain object represents one solution, and the redundant
objects can be removed from the system which can be used to remove the wrong results.
Objects which represent all possible results are output. Chain P systems which give
uniform solutions to SAT problem and Hamilton Path problem (HPP), which work in a
deterministic way, not using the membrane division rules, are constructed as examples in
this paper.

The application of P systems is another research hotspot in the field. Although
P systems have been used in many fields, the intensive coupling between membrane
computing and the optimisation is still an open problem. For this purpose, two

 326 Y. Zhao et al.

applications in clustering: the graph clustering and the ROCK clustering based on the
chain P systems are presented. These two applications also show the advantage of the
chain P systems.

The contributions of this paper focus on two folds: for membrane computing, a new
variant of P systems is proposed which can decrease the computing resources; for
clustering analysis, the new algorithms combined with the chain P systems are presented
which can reduce the time complexity of data processing and satisfy the requirement of
improving the processing speed of the big data.

The paper is organised as follows. The chain P system is proposed in Section 2.
Section 3 analyses the computational power and efficiency of the chain P systems.
Section 4 and Section 5 give the graph clustering algorithm and the ROCK algorithm
based on the chain P systems. Conclusions are given in Section 6.

2 The chain P systems

Several concepts are defined firstly. If no other membranes are in a membrane, this
membrane is called an elementary membrane. The ordered chain consisting of several
linked membranes is called a chain membrane. Each membrane in the chain membrane is
called a cell membrane. Each symbol in the alphabet is called an elementary object. The
ordered object consisting of several linked symbols is called a chain object.

The formal description of the chain P system is as follows.

 1 2, , , , , , , , ,m in outO μ w w w R ρ i i  

 O is the alphabet which includes all elementary objects of the system.

 μ is the membrane structure.

 wj(1 ≤ j ≤ m) is the initial chain objects in membrane j, and object λ shows no object
is in the current membrane.

 R is the set of the chain rules. A chain rule is composed of n sub-rules with the form
of rj = {rj.1, rj.2, …, rj.n} which is executed from left to right. If a certain sub-rule can
not be executed, the execution of this chain rule is end, and the remaining sub-rules
are no longer executed.

 ρ defines the partial ordering relationship of the rules, i.e., rules with higher orders
are executed with higher priority.

 iin is the label of the membrane where the objects are put into.

 iout is the label of the membrane where the computational result is placed.

If iout = 0, the computational result is reserved in the environment.

2.1 The chain membranes

The membranes exist in the form of chain σi = ri1 * σi1  ri2 * σi2  …  rin * σin (the *
can be omitted if there is no ambiguity). Where, σi1, σi2, …, σin represent the cell
membranes in the chain membrane σi, ri1, ri2, …, rin are integers, rij * σij represents this
chain membrane σi contains |rij| copies of σij. If rij > 0, σij carries positive charge;

 A chain membrane model with application in cluster analysis 327

otherwise, σij carries negative charge. Figure 1 shows an example of the chain
membranes.

Figure 1 p chain membranes

Notes: Where the chain membrane σ1 contains n cell membranes, the chain membrane σ2
contains m cell membranes, …, and the chain membrane σp contains t cell
membranes.

Figure 2 The chain membrane σ1 contains n cell membranes σ11, σ12, …, σ1n

Notes: σ1 contains p – 1 child chain membranes σ2, σ3, …, σp, then each child chain
membrane σi(2 ≤ i ≤ p) contains n cell membranes σi1, σi2, …, σin, and the objects
in σ1j are the union of all objects in cell membranes σ2j, σ3j, …, σpj.

Figure 3 The whole structure of the tree topological P systems

 328 Y. Zhao et al.

The whole system has two topological structures: tree and graph. In the tree topological
P systems, the relationship among the chain membranes is inclusion, i.e., the cell
membrane of the parent chain membrane contains the corresponding cell membranes of
the child chain membranes. Figure 2 and Figure 3 show examples of the tree topological
P systems structure. Figure 4 gives an example of the graph topological P systems
structure.

Figure 4 The whole structure of the graph topological P systems

2.2 The chain objects

The objects exist in the form of chain a = r1 * x1  r2 * x2  …  rn  xn (the * can be
omitted if there is no ambiguity). Where, rj * xj represents this chain object a contains |rj|
copies of xj. If rj > 0, xj is a positive object; otherwise, xj is a negative object.

The structured objects can store a large amount of information. For instance, to
calculate the value of 201 + 12, two chain objects a1 = 2x3  x1 and a2 = x2  2x1 are
constructed. Each object represents a number. By two rules a3 = a1 + a2 and 10xi → xi+1,
i ≥ 1, the new object a3 = 2x3  1x2  3x1 is obtained which means the result is 213. If the
traditional unstructured objects are used, 213 objects are needed. The structured objects
can improve the computational efficiency and reduce the space complexity.

2.3 The chain rules

There are two types of rules: rules on the chain objects and rules on the chain
membranes. The traditional rules can also be used in the chain P systems, and several
new types of rules are designed.

2.3.1 Rules on objects

For arbitrary two chain objects a1 = r1 * x1  r2 * x2  …  rn * xn and a2 = h1 * x1  h2
* x2  …  hn * xn:

 Object addition rule a3 = a1 + a2:

The sum of a1 and a2 is a1 + a2 = (r1 + h1)x1  (r2 + h2)x2  (rn + hn)xn, a3 is also a
chain object.

 A chain membrane model with application in cluster analysis 329

 Object subtraction rule a3 = a1 – a2:

The difference of a1 and ai2 is a1– a2 = (r1 – h1) * x1  (r2 – h2) * x2  …  (rn – hn)
* xn, a3 is also a chain object.

 Object crossover rule (a1$ta2):

Given a cross point t, cross a1 = r1 * x1  …  rt * xt  rt+1 * xt+1  …  rn * xn and
a2 = h1 * x1  …  ht * xt  ht+1 * xt+1  …  hn * xn, the obtained objects are
a1 = r1 * x1  …  rt * xt  ht+1 * xt+1  …  hn * xn and a2 = h1 * x1  …  ht * xt
 rt+1 * xt+1  …  rn * xn.

 Object variation rule a: rt * xt → r't * x't:

Given a variation point t, a varies to r1 * x1  r2 * x2  …  r't * x't  … rn * xn.
Note that xt and x't can be the same one.

 Extended object variation rule 1 1 2 2 1 1 2: m mt t t t t t t t ta r x r x r x r x r          

2 :m mt t tx r x     

Given m(m ≥ 1) variation points t1, t2, …, tm, a varies to 1 1t t t tr x r x      

2 2 .m mt t t t n nr x r x r x           

2.3.2 Rules on membranes

For chain membrane σq+1 = r(q+1)1 * σ(q+1)1  r(q+1)2 * σ(q+1)2  …  r(q+1)n * σ(q+1)n and its
child membrane σq = rq1 * σq1  rq2 * σq2  …  rqn * σqn:

 Parent-child communication rule [σq, σq+1]: (a, up); (b', in) → (b, down); (a', in) or
[σq+1, σq]: (b, down); (a', in) → (a, up); (b', in), a, a', b, b'  O*:

Object a in σq evolves to a' and enters its parent membrane σq+1, at the same time, b
in σq+1 evolves to b' and enters its child membrane σq. Note that for the skin
membrane, its parent membrane is the environment.

 Extended parent-child communication rule [σq1, …, σqn, σq+1]: (a1, …, an, up); (b1, …,
bn, in) → (b, down); (a'1, …, a'n, in) or [σq+1, σq1, …, σqn]: (b, down); (a'1, …, a'n, in)
→ (a1, …, an, up); (b1, …, bn, in), a1, …, an, a'1, …, a'n, b, b1, …, bn  O:

Objects a1, …, an in σq1, …, σqn evolve to a'1, …, a'n and enter their parent membrane
σq+1, at the same time, b in σq+1 evolves to b1, …, bn and enters its child membranes
σq1, …, σqn.

2.4 The system computational process

Rules are executed in non-deterministic maximally parallel manner in each membrane,
i.e., at any step, if more than one rule can be executed but the objects in the membrane
can only support some of them, a maximal number of rules will be executed. Each
P system contains a global clock as the timer, and the execution time of one rule is set to
a time unit. The computation halts if no rule can be executed in the whole system. The
computational results are represented by the types and numbers of specified objects in a

 330 Y. Zhao et al.

specified membrane. Because objects in a P system evolve in maximally parallel, the
system computes very efficiently.

3 Computational power and efficiency analysis

3.1 Computational power analysis

The computational power of the chain P systems is analysed by simulating the register
machine.

It has been proved that a register machine with three registers can generate the set of
the length of the recursively enumerable language. Therefore, a register machine with
three registers M = (m, H, l0, lh, I) is considered. The generated number stores in
register 1 which number will not decrease. Registers 2 and 3 are empty when the register
machine halts. The following chain P system is constructed to simulate M.

 1 2 3 4, , , , , , , ,r outO μ w w w w R ρ i 

where

 O = {a}  {l  H}

 μ = [[]1[]2[]3]4

 wi = λ, 1 ≤ i ≤ 3, w4 = l0

 ρ = {r1 = r2, r3 > r4}

 iout = 1

 R.

In r, membranes 1, 2 and 3 are corresponding to registers 1, 2 and 3, and the number of
objects a in a membrane represents the value of the corresponding register. The
instructions in the register machine are simulated by rules.

For each add instruction li: (ADD(r), lj, lk), r = 1, 2, 3, the following rules are
introduced:

     1 4: , : , , (,)(,)r i jr σ σ l down l in λ up a in

    2 4: , : , , (,)(,)r i kr σ σ l down l in λ up a in

The two rules can simulate the add instruction. At one step, r1 or r2 is chosen
non-deterministically to execute. If r1 is chosen, li evolves to a and enters its child
membrane σr, and lj enters σ4 at the same step. Through this rule, the number of a in
membrane r increases by 1, and the next instruction changes to lj. Similarly, if r2 is
chosen, the number of a in membrane r increases by 1, and the next instruction changes
to lk.

For each sub instruction li: (SUB(r), lj, lk), r = 1, 2, 3, the following rules are
introduced:

    3 4: , : , , (,)(,)r i jr σ σ l down l in a up λ in

 A chain membrane model with application in cluster analysis 331

    4 4: , : , , (,)(,)r i kr σ σ l down l in λ up λ in

The two rules can simulate the sub instruction. At one step, if the number of a in
membrane r is not 0, r3 executes. Object li is dissolved, and a evolves to lj and enters σ4 at
the same step. Through this rule, the number of a decreases by 1, and the next instruction
changes to lj. If the number of a in membrane r is 0, r3 can not execute, and r4 obtains the
chance to execute. Object li is dissolved, and lk enters σ4 at the same step. The number of
a in membrane r is still 0, and the next instruction changes to lk.

The halt instruction is simulated when lh appears in membrane 4.
The chain P system r simulates the register machine M, therefore, N(M) = N(r).

3.2 Computational efficiency analysis

Uniform solutions to two NP problems (SAT problem and HPP) working in a
deterministic way are used to show the computational efficiency of the chain P systems
without the expansion of membranes.

3.2.1 SAT problem

SAT (the satisfiability of conjunctive normal form expression) problem is one of the most
typical NP-complete problems. For a Boolean variable set X = {x1, x2, …, xn}, a literal li
is xi or ¬xi for 1 ≤ i ≤ n. A clause Ci is a disjunction of literals 1 2 ,ri n n nC l l l    1 ≤

r ≤ n. A conjunctive normal form (CNF, for short) is a conjunction of clauses C1 ˄ C2 ˄
… ˄ Cm. An assignment is a mapping X → {0, 1} from each variable xi to its value
(value 1 represents true and value 0 represents false.). For example, X = {x1, x2, x3}, the
conjunctive normal form is (x1 ˅ ¬x2) ˄ (x1 ˅ x3). The x1 ˅ ¬x2 and x1 ˅ x3 are the two
clauses. The first clause contains two literals x1 and ¬x2, and the second clause contains
two literals x1 and x3. If an assignment of x1, x2, …, xn can be found, which makes at least
one literal true in each clause and then makes all m clauses true, this SAT problem is
satisfiable. Otherwise, this SAT problem is unsatisfiable. In the above example, let
x1 = x2 = x3 = 1, the value of the conjunctive normal form is (1 ˅ 0) ˄ (1 ˅ 0) = 1 ˄ 1 = 1.
Therefore, the SAT problem is satisfiable.

The formal definition of SAT problem is as follows:

 Problem 1 – NAME: SAT.

Instance: A set of clauses C = {C1, C2, …, Cm}, which is built on a Boolean variable
set X = {x1, x2, …, xn}.

Question: Is there an assignment of Boolean variables x1, x2, …, xn that can make the
values of all clauses true?

SAT(n, m) denotes the set of all instances of the SAT problem having n variables and m
clauses. In this section, a uniform solution working in a deterministic way is constructed
by the chain P systems, which can solve all SAT(n, m) problems in linear time.

The instance parameters need to enter a chain P system, therefore the CNF needs to
be encoded as object a = d11 * a11  d12 * a12  …  d1n * a1n * d21 * a21  d22 * a22  …
 d2n * a2n  …  dm1 * am1  dm2 * am2  …  dmn * amn. The coefficient dij of aij has
three values: 0, 1 and –1. The value 0 represents the ith clause does not contain the literal

 332 Y. Zhao et al.

xj or ¬xj, and the value 1 (resp. –1) represents the ith clause contains the literal xj (resp.
¬xj).

The formal definition of the chain P system for SAT(n, m) problems is as follows.

 , , , , , ,SAT in outO μ w R ρ i i 

where

 O = {aji, vi, sj, φ}, 1 ≤ i ≤ n, 1 ≤ j ≤ m

 μ = [1]1

 w = λ

 ρ = {r1 > r2}

 iin = 1

 iout = 1

 R.

Other objects used in SAT are explained. Object v = h1 * v1  h2 * v2  …  hn * vn
shows the assignment of all Boolean variables. The coefficient hi of vi has two values: 1
and –1. The value 1 (resp. –1) represents the value of the variable xi is set to 1 (resp. 0).
Object s = h1 * v1  h2 * v2  …  hn * vn  d11 * a11  d12 * a12  …  d1n * a1n  d21
* a21  d22 * a22  …  d2n * a2n  …  dm1 * am1  dm2 * am2  …  dmn * amn  t1 * s1
 t2 * s2  …  tm * sm uses to obtain the satisfiable assignment. Object φ has only one
elementary object which is used to control the computational process.

 1 1.1 1.2 1.3 1.4: , , ,r r r r r

 
       
       

 

1.1.

1 1 2 2 1 1 2 2

1 11 11 2 12 12 1 1 1 21 21

2 22 22 2 2 1 1 1 2 2

2 1 2

:

0 0 0

n n n naφ

n n n

n n n m m m

m n nn mn m

r

h v h v h v h v h v h v

h d a h d a h d a h d a

h d a h d a h d a h d

a h d a s s s

            

            

            

           

 


 

 

1.2

1

:

: 0 1 (2)ij ij

r

s d a a s d      

 

1.3

1 1 2 2 11 11 12 12 1 1

21 21 22 22 2 2 1 1 2 2

1 1 2 2 1

:

0

n n n n

n n m m m m

mn mn m m m

r

h v h v h v d a d a d a

d a d a d a d a d a

d a t s t s t s λ t t

            
            

            

 
  

 

1.4

1 1 2 2 11 11 12 12 1 1

21 21 22 22 2 2 1 1 2 2

1 1 2 2 1 1 2 2

:

n n n n

n n m m m m

mn mn m m n n

r

h v h v h v d a d a d a

d a d a d a d a d a

d a t s t s t s h v h v h v

            
            
               

 
  

 

 A chain membrane model with application in cluster analysis 333

 2 2.1 2.2 2.: , , , nr r r r

 

2.1

1 1 2 2 1 1 2 2 1 1

2 2

:

,

1, 1

n n n n

n n i

r

h v h v h v h v h v h v h v

h v h v h i n

              

        

 


 

2.2

1 1 2 2 1 1 2 2 1 1 2

2

:

,

1, 1

n n n n

n n i

r

h v h v h v h v h v h v h v h

v h v h i n

              

       

 




 

2.

1 1 2 2 1 1 2 2 1 1

2 2

:

,

, 1, 1

n

n n n n

n n i

r

h v h v h v h v h v h v h v

h v h v φ h i n

             

        

 


Computation begins when v = v1  v2  …  vn and a enter membrane 1. Object v = v1 
v2  …  vn means the values of all xi are set to 1 in the given assignment.

Generating stage

The priority of r1 is higher than that of r2, however, the promoter φ is not in the
membrane in the beginning, therefore, r2 executes firstly. The chain rule r2 contains n
sub-rules. At step 1, r2.1 divides the initial v into v1 = v1v2  …  vn and v2 = –v1  v2 
…  vn showing that the value of x1 can be 1 or –1 in an assignment. Sub-rule r2.2 divides
v1 into v11 = v1  v2  …  vn and v12 = v1  –v2  …  vn, and divides v2 into v2 = –v1
 v2  …  vn and v2 = –v1  –v2  …  vn at step 2. This shows the value of x2 can be
1 or –1 in an assignment. And so on, until r2.n divides each h1 * v1  h2 * v2  …  hn *
vn into h1 * v1  h2 * v2  …  hn * vn and h1 * v1  h2 * v2  …  –hn * vn showing that
the value of xn can be 1 or –1 in an assignment. Rule r2 generates 2n chain objects v
showing all combinations of the values of xi. An object φ is generated by r2.n showing the
generation stage is over.

Checking stage

With φ, r1 begins to execute. Each v evolves to s by r1.1. In the generated s, h1 * v1  h2 *
v2  …  hn * vn shows the assignment of xi, (h1 + d21) * a21  (h2 + d22) * a22  …  (hn
+ d2n) * a2n  …  (h1 + dm1) * am1  (h2 + dm2) * am2  …  (hn + dnn) * amn shows the
relationship between the assignment and the CNF, and 0 * s1  0 * s2  …  0 * sm
shows the value of each clause in the initial. The coefficient of vi has two values: 1 and
–1, and the coefficient of aij has three values: 0, 1 and –1. Therefore, the relationship
between the values of the two coefficients and the satisfiability of the corresponding
literal is as follows:

 hj = 1, dij = 1, hj + dij = 2, the value of literal xj in clause Ci is true

 hj = 1, dij = 0, hj + dij = 1, the clause Ci dose not contain the literal xj

 hj = 1, dij = –1, hj + dij = 0, the value of literal xj in clause Ci is false

 334 Y. Zhao et al.

 hj = –1, dij = 1, hj + dij = 0, the value of literal xj in clause Ci is false

 hj = –1, dij = 0, hj + dij = –1, the clause Ci dose not contain the literal xj

 hj = –1, dij = –1, hj + dij = –2, the value of literal xj in clause Ci is true.

Therefore, the certain literal xj in clause Ci is true when the coefficient value of aij is 2 or
–2; false otherwise.

Sub-rule r1.2 changes the coefficient value of si from 0 to 1 if the coefficient value of
aij is 2 or –2 to show that Ci is true. A SAT problem is satisfiable when all m clauses are
true, i.e., s with the coefficient values of all si equal to 1 needs to be found. Sub-rule r1.3
dissolves s with the coefficient values of several si equal to 0, and r1.4 evolves s to v
abstracting the assignment.

Computational resources and complexity

 the initial chain objects number: 2  Θ(1)

 the membranes number: 1  Θ(1)

 the number of rules: 2  Θ(1)

 the number of sub-rules: n + 4  Θ(n)

 the computational steps: n + 4  Θ(n).

The chain P system solves the SAT problem in linear time with linear computational
resources, and all solutions can be obtained through it. The traditional P systems solve the
SAT problem by membrane division rules, while the chain P system realises the
computational process without the expansion of membranes (Song et al., 2015).

3.2.2 Hamilton path problem

HPP is one of the most typical NP-complete problems. The formal definition of HPP is as
follows.

 Problem 2 – NAME: HPP.

Instance: A graph γ = (N, E), where N = {a1, a2, ꞏꞏꞏ, an} is the set of nodes and
E = {e'ij, 1 ≤ i, j ≤ n} is the set of edges.

Question: Is there a Hamilton path in γ which length is n visiting each node from γ
exactly once?

HPP(n) denotes the set of all instances of the HPP having n nodes. In this section, a
uniform solution working in a deterministic way is constructed by the chain P systems,
which can solve all HPP(n) in linear time.

The instance parameters need to enter a chain P system, therefore the edges in γ need
to be encoded as object e'j1j2 which represents there is an edge between aj1 and aj2.

The formal definition of the chain P system for HPP(n) problems is as follows:

 , , , , ,HPP in outO μ w R i i 

 O = {q, Vij, it, ej1j2, 1 ≤ q ≤ n + 1, 1 ≤ i, j ≤ n, 0 ≤ t ≤ n}

 μ = [1[2]2]1

 A chain membrane model with application in cluster analysis 335

 w1 = w2 = λ

 iin = 1

 iout = 2

 R.

Other objects used in HPP are explained. Object 1 2 11 2 1nj i i ni tv V V V      

22 nt nt    is constructed by 2n + 1 components, where j represents the jth point

in a path is going to be chosen, jjiV represents the jth point in a path is aij, jjt represents

the occurrence number of aj in a path is tj. Object 1 2j je represents that there is not an edge

between 1ja and 2 .ja Object 1 21 2 ni i nis V V V    represents the final Hamilton path,

where jjiV represents the jth point in a path is .jia

 1 1 1.1 1.2 1.5: : , , ,R r r r r

 

 

 

1 2 1 2

1 2 21

1 2 1 2

1 2 1 2

1.1

1 2 1 2 1

1 2 1 2 11 1

1 2 2 1 2 1

1 1 2 1 2 1

:

,

,

j n n

n n

n n

n n

j i i ji ni t t nt j

i i j ni t nt jt

i i j ni t ntt

j i i jn ni t t n t

r

V V V V

V V B V

V V B V

V V V V







 

         

        

        

        

  
  
  


  

    

   
  

   

1 2

1.2

¬ 1 2

:

() j je j j

r

e 

 1 2 1 2
1

1.3

1 1 2 1 2

:

n n i ij j
n i i ni t t nt e

r

V V V λ


             

1 2 1 2

1.4

1 1 2 1 2 0

:

n nn i i ni t t i nt

r

V V V λ                

   
 

 

1 2 1 2

1 2

1.5

1 2 1 1 2 1 2

1 2

1 2 1 2

:

, : , ; (,)

(,); ,

1 , , , , , 0 , , ,

n n

n

n i i ni t t nt

i i ni

n n

r

σ σ V V V down λ in

λ in V V V in

i i i j n t t t n

        

   

   

 


 

   

2 :R

λ

Computation begins when v = 1  V10  V20  …  Vn0  10  20  …  n0 and

2ij je enter membrane 1. Object v = 1  V10  V20  …  Vn0  10  20  …  n0

means each point in a path is not chosen and the occurrence number of each point is zero
in the initial. The points in a path begin to be chosen from the first point.

 336 Y. Zhao et al.

Generating stage

The chain rule r1 contains four sub-rules. Sub-rule r1.1 executes n times to generate all
candidate paths. At step 1, the initial v is divided into v1 = 2  V11  V20  …  Vn0
 11  20  …  n0, v2 = 2  V12  V20  …  Vn0  10  21  …  n0, ꞏꞏꞏ,
vn = 2  V1n  V20  …  Vn0  10  20  …  n1 showing that the first point in a
path can be a1, a2, ꞏꞏꞏ, an. At step 2, v1 is divided into v11 = 3  V11  V21  …  Vn0
 12  20  …  n0, v12 = 3  V11  V22  …  Vn0  11  21  …  n0, …,
v1n = 3  V11  V2n  …  Vn0  11  20  …  n1 showing that the second point
in a path can be a1, a2, …, an. Similarly, vi is divided into vi1 = 3  V11  …  Vi1  …
 Vn0  12  …  n0, vi2 = 3  V11  …  Vi2  …  Vn0  11  21  …  n0,
ꞏꞏꞏ, vin = 3  V11  …  Vin  …  Vn0  11  20  …  n1. And so on, until the nth
point in a path is chosen. Sub-rule r1.1 generates nn chain objects v showing all
combinations of paths.

Checking stage

Sub-rule r1.2 generates 2ij je which shows the edges not belonging to the graph. Sub-rule

r1.3 dissolves v which contains the edges not belonging to the graph. Sub-rule r1.4
dissolves v which does not contain all nodes. In v, iit shows the occurrence number of ai

in this path is ti. If a certain ti is 0, ai dose not in this path and the corresponding v is
dissolved.

Output stage

Sub-rule r1.5 deals with the remaining v which contains the final solutions. The
corresponding s enters membrane 2 which stores the final results.

Computational resources and complexity

 the initial objects number: 1 + m  Θ(m)

 the membranes number: 2  Θ(1)

 the number of rules: 1  Θ(1)

 the number of sub-rules: 5  Θ(1)

 the computational steps: n + 3  Θ(n).

where m is number of the edges in the graph. The chain P system solves the HPP in linear
time with linear computational resources, and all solutions can be obtained through this
system. The traditional P systems solve the HPP by membrane division rules, while the
chain P system realises the computation process without the expansion of membranes
(Liu et al., 2015b).

4 The graph clustering based on the chain P systems

In this section, a general clustering problem that database X = {a1, a2, ꞏꞏꞏ, an} is clustered
into k clusters is considered. Data points are transformed into nodes and dissimilarities

 A chain membrane model with application in cluster analysis 337

among the data points are transformed into the edge weights of complete undirected
graph. The smaller the weight is, the more similar the two data points are. The clustering
problem is then transformed into a graph theory problem of finding the shortest path
which length is n visiting each node from the graph exactly once.

The process of the algorithm is as follows: A shortest path that connects all nodes is
found; the edges with the k – 1 biggest weights are selected then; the path is divided into
k parts from the edges selected above finally. The k parts are the k clusters.

The definition of the dissimilarity matrix is given informally firstly. Matrix D'nn
between any two data points is:

11 12 1

21 22 2

1 2

,

n

n
nn

n n nn

f f f

f f f
D

f f f

   
     
 
    







 (1)

where, f'ij is the dissimilarity between ai and aj. Specific calculational method is selected
depending on the data type.

The matrix elements f'ij are changed to integer fij by expanding 100 times and
rounding for membrane computing. By this, the dissimilarity matrix Dnn is obtained:

11 12 1

21 22 2

1 2

.

n

n
nn

n n nn

f f f

f f f
D

f f f

 
 
 
 
 
 







 (2)

The instance parameters need to enter a chain P system, therefore the weight among the
nodes needs to be encoded as object f = d11 * f11  d12 * f12  …  d1n * f1n  d21 * f21 
d22 * f22 …d2n * f2n  …  dn1 * fn1  dn2 * fn2  …  dnn * fnn, where dij * fij represents
the weight between ai and aj is dij.

4.1 The chain P system for improving the graph clustering

The formal definition of the chain P system for the graph clustering is as follows.

 1 2 3 1 2 3, , , , , , , , , ,graph in outO μ w w w R R R ρ i i 

where

 O = {Vij, S, i, p, fij, Uij, cij, 1 ≤ i, j ≤ n}

 μ = [1[3]3[2]2]1

 w1 = w2 = λ, w3 = {x = V11  V21  …  Vn1  0 * S  0 * 1  0 * 2  …  0 *
n  (n – k) * p, f}

 ρ = {ri,j > ri,t i = 1, 3, j < t}

 iin = 3

 iout = 2

 338 Y. Zhao et al.

 R.

Other objects used in graph are explained. Object 1 21 2 1ni i nix V V V d S h      

1 2 2 n nh h h p          is constructed by 2n + 2 components, where Vij

represents the ith point in a path is aj, d * S represents the weight sum of a path is d, hi * i
represents the occurrence frequency of ai is hi, h * p represents h times mergence of the
clusters are needed in a path. Object 1 2 1 2 2 3 2 3 1 1n n n ni i i i i i i i i i i iy h U h U h U       

h p  is constructed by n + 1 components, where hij * Uij represents the weight between

ai and aj is hij, the meaning of h * p is the same with that above. Object 1j ji ic  only

constructs by one component, which represents that jia and 1jia  belong to the same

cluster.

1 2 1 2 1 3 2 3 1 1 1 1 2

1 2 2 3 2 3 1 1 1 1

1

1.1

:

:

1

2 (1) ,
j j n n n n

j j n n n n j j

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

R

r

h U h U U h U g p h

U h U U h U g p c
  

   

           

           

 
 

1 2 1 2 1 3 2 3 1 1 1 1 2

1 2 2 3 2 3 1 1 1 1

1

1.1

:

:

1

2 (1) ,
j j n n n n

j j n n n n j j

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

R

r

h U h U U h U g p h

U h U U h U g p c
  

   

           

           

 
 

 
     

1 2 1 2 1 3 2 3 1 1 1 2 1 2

2 3 1 2 2 3 2 3 1 1

1.2 :

1

1 1 1 , 1

n n n n

n n n n

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i

r

h U h U h U g p h U

h U h U h U g p g

 

 

          

            




 
  

1 2 1 2 2 3 2 3 1 1

1 1

1.3

1 2

:

, 0

, , (,) , (,)

n n n n

j j j j

i i i i i i i i i i i i

i i i i

r

σ σ d U d U d U

p c down λ in c in λ up

 

 

      

 



2 :R

λ

 
3

3.1 3.1.1 3.1.2 3.1.(1)

:

: , , , n

R

r r r r 

3.1.1

11 21 1 1 2

11 21 1 1 2

12 21 1 1 2

1 21 1 1 2

:

0 0 0 0 ()

0 1 0 0 () ,

0 0 1 0 ()

0 0 0 1 ()

n n

n n

n n

n n n

r

V V V S n k p

V V V S n k p

V V V S n k p

V V V S n k p

               
              
              

              

 
 
 


 

  
  
  

  

 A chain membrane model with application in cluster analysis 339

 
   

   

 

3.1.2

1 21 1 1 1 2 2

1 21 1 1 1 1 2 2

1 22 1 2 1 1 2 2

1 21 1 1 1 2 2

:

()

1

() , 1

() ,

i n n n f

i n i n n

i n i

n n

i n in n n

r

V V V d S h h h n k p

V V V d d S h h h

n k p V V V d d S h h

h n k p

V V V d d S h h h

              

              

             
     

            

 

 





 

  

  
 



  
()n k p  




    

   

1 2 1

1 2 1 1

1 2 1

1

3.1.

1 2 (1) 1 1 1 2 2

1 2 (1) 1 1 1

1 2 2 1 2 (1) 2

2 1 1 2 2

:

() 1

() ,

1 ()

n

n n

n

n

n

i i n i n n n

i i n i n if

n n i i n i n

i n n

r

V V V V d S h h h

n k p V V V V d d S h

h h n k p V V V V

d d S h h h n k



 











            

            

            

            

 



 


  

  

  

 
 
1 2 1 11 2 (1) 1 1 2 2

,

1 ()

n ni i n i nn i n

n n

p

V V V V d d S h h

h n k p

 



           

     


  



1 2

3.2

1 2 1 1 2 2

1 2

:

()

, 0
n

n

i i ni n n

n

r h

V V V d S h h h n k

p λ h h h

             
     

 


  

 3.3 3.3.1 3.3.2: ,r r r

  
  



1 2

2 1 2 2 3 2 3 1

1

3.3.1

1 2 1 2 1 1 2 2

:

, 0

() , (,) (,)

() ,

n

i n n

n n

i i ni n n

i i i i i i i i i i

i i

r

σ σ V V V S h h h

n k p f up λ in λ down d U d U d

U n k p in





            

       

   

 



  

3.3.2 :r

x λ

3.4 :

: (1) , 0

r

x d S d S d    

Computation begins when f enters membrane 3.

Generating stage

In the initial, x = V11  V21  …  Vn10  S0 * 1  0 * 2  …  0 * n  (n – k) * p is
in membrane 3. Vi,1 represents that all points in a path are set to a1, 0 * S represents the

 340 Y. Zhao et al.

weight sum is set to 0 because no path is formed in the initial, 0 * i represents that the
occurrence frequency of each data point in the dataset is set to 0, and (n – k) * p
represents n – k times mergence of the clusters are needed in a path. Rule r3.1 generates
all solution space. Sub-rule r3.1.1 generates n different f. Each f carries V11, V12, …, V1n
respectively, which means the first point in a path has n choices: a1, a2, ꞏꞏꞏ, an. At the
same time, the corresponding coefficient of i adds one. Sub-rule r3.1.2 is executed then.
Each f generates n different f again. Each f carries V21, V22, …, V2n respectively, which
means the second point in a path has n choices: a1, a2, ꞏꞏꞏ, an. At the same time, the
corresponding coefficient of i adds one. And so on, until the nth point in a path is
chosen. Rule r3.1 generates nn objects f showing all combinations of paths.

Shortest path search stage

The path with the minimum weight sum is found which is called the shortest path. The
weight sum of each path is recorded by the coefficient of S. When all weights of a path
are add up, the coefficient of S in all f decreases simultaneously by r3.4 until 0 * S
appearing. The f with 0 * S is changed to 1 2 1 2 2 3 2 3 1 1n n n ni i i i i i i i i i i iy d U d U d U       

()n k p   and enters σ1 by r3.3.1, other f are dissolved by r3.3.2.

Division stage

The n points in a path are divided into k parts from the edges with the k – 1 biggest
weights according to the preset number of clusters k. This can make the points in the
same cluster closer, and the points in different clusters more distant. All coefficients of

1j ji iU  reduce at the same time by r1.2. When the coefficient of a certain 1j ji iU  equals to

–1, an object 1j ji ic  is produced by r1.1. The coefficient of 1j ji iU  reduces until

1 2 1 2 2 3 2 3 6 7 6 7 5 ,i i i i i i i i i i i iy d U d U d U p         are produced. These 1j ji ic  show that

the weight between jia and 1jia  is one of the n – k shortest weights among all.

Therefore, jia and 1jia  belong to the same cluster. All 1j ji ic  enter membrane 2 by r1.3.

4.2 Time complexity analysis

The time complexity of this algorithm is n + 1 + smin + 1 + d + 1 = O(n + smin + d), where,
smin is the value of the minimum weight sum in all paths, and d is the (n – k)th minimum
weights in the shortest path.

The chain P system solves the graph clustering in linear time.

4.3 Test and analysis

To illustrate how the P system runs specifically, the following simple example is
considered: cluster 7 integral points (1, 1), (2, 1), (2, 2), (3, 4), (4, 2), (4, 3), (5, 4) into
two clusters. Obviously, n = 7, k = 2.

The dissimilarity matrix D77 is constructed firstly. In this example, the Euclidean
distance is used as the dissimilarity.

 A chain membrane model with application in cluster analysis 341

77

0 1 2 13 10 13 25

1 0 1 10 5 8 18

2 1 0 5 4 5 13

,13 10 5 0 5 2 4

10 5 4 5 0 1 5

13 8 5 2 1 0 2

25 18 13 4 5 2 0

D

 
 
 
 
 

  
 
 
 
 
 

 (3)

Rules r3.1 and r3.2 are executed firstly generating 7! objects f which means all
combinations of paths.

Rules r3.3 and r3.4 find the f representing the shortest path. This f is changed to

1 2 1 2 2 3 2 3 6 7 6 7 5 ,i i i i i i i i i i i iy d U d U d U p         and enters σ1, other f are dissolved.

In this example, one of the four shortest paths is obtained randomly:

1 7-4-6-5-3-2-1

2 4-7-6-5-3-2-1

3 1-2-3-5-6-4-7

4 1-2-3-5-6-7-4.

Rules r1.1, r1.2 and r1.3 generate 1j ji ic  which means jia and 1jia  are in one cluster, and

put them into membrane 2. If the first path is chosen, the two clusters can be {4, 6, 7},
{1, 2, 3, 5} or {4, 5, 6, 7}, {1, 2, 3} because the weights between 6, 5 and 5, 3 are the
same. Similarly, if the second path is chosen, the two clusters can be {4, 6, 7}, {1, 2, 3,
5} or {4, 5, 6, 7}, {1, 2, 3} because the weights between 6, 5 and 5, 3 are the same. If the
third path is chosen, the two clusters are {4, 6, 7}, {1, 2, 3, 5}. If the fourth path is
chosen, the two clusters are {4, 6, 7}, {1, 2, 3, 5}.

5 The ROCK clustering based on the chain P systems

Boolean or categorical type database consists of transactions. Each transaction consists of
some items and each item has a number of fixed values. In this section, a clustering
problem for Boolean or categorical type database is considered: database P = {p1, p2, ꞏꞏꞏ,
pn} with each transaction has m items is clustered into k clusters.

Three notions are introduced firstly (Guha et al., 2000).

 Neighbours: The neighbours of a data point are the data points which are similar to
it. In this paper, the similarity between two transactions is set as the number of the
same value items. If the number is larger than or equal to a certain threshold, the two
transactions are called neighbours.

 Links: Links(pi, pj) is the number of the common neighbours between transactions pi
and pj. The larger the Links(pi, pj), the more common neighbours they have.

 Goodness measure: Goodness measure evaluates the similarity between clusters. link
[Ci, Cj] defines the number of links between clusters Ci and Cj, i.e.,  ,i jlink C C

 342 Y. Zhao et al.

 
,

, .
q i r j

q r
p C p C

links p p
 

 In this paper, the goodness measure for merging

clusters Ci and Cj is defined as follow:    ,
, .

i j
i j

i j

link C C
g C C

n n



 This goodness

measure is equivalent to the average number of links in the two clusters. The pair of
clusters with the maximum goodness measure is the best pair of clusters to be
merged.

The process of the algorithm is as follows: Each transaction is seen as a cluster initially.
The two clusters with the largest goodness measure are merged iteratively until k clusters
are left.

The instance parameters need to enter a chain P system, therefore the database needs
to be encoded as object p = h1 * a1  h2 * a2  …  hm * am, hi  {0, 1} representing the
database, where 1 * ai (resp. 0 * ai) represents the ith item is contained (resp. not
contained) in a transaction; and the number of clusters needs to be encoded as object ξ
showing the number of clusters needs to be obtained by its number.

5.1 The chain P system for improving the ROCK clustering

The formal definition of the chain P system for the ROCK clustering is as follows.

 , , , , , ,ROCK in outO μ w R ρ i i 

  1 2 1 2 1 2 1 2 3 1 2 1 2, , , , , , , , , , , , 1 , 1i j j i i i i i i i i i i i i iO a ξ t γ δ δ c c d γ γ C i m i n     

 μ = [1]1

 w = {1 * t1  0 * t2  …  0 * tn  1 * γ1, 0 * t1  1 * t2  …  0 * tn  1 * γ2, …,
0 * t1  0* t2  …  1 * tn  1 * γn, 0 * cij1  0 * cij2  …  0 * cijn  0 * δij  2 *
γ, C00}

 ρ = {ri > rj, i < j}

 iin = 1

 iout = 1

 R.

Other objects used in ROCK are explained. Object X = f1 * t1  f2 * t2  …  fn * tn  * q
 γi represents the order number and the total number of the transactions in Ci. Object
T = h1 * a1  h2 * a2  …  hm * am  d * δij is an auxiliary variable, where hf * af
represents the total number of the fth item in transactions pi and pj is hf, and d * δij
represents the similarity between pi and pj is d. Object cij represents pi and pj are
neighbours. Object S = h1 * cij1  h2 * cij2  …  hn * cijn  d * δij  q * γ is an auxiliary
variable, where the first n components represent pi and pj contain/do not contain the
common neighbour: pt, d * δij represents the number of the common neighbours between
pi and pj is d, and q * γ represents the total number of the considered transactions is q.
Object D = q * δ'ij  d * γ' represents the number of the common neighbours between Ci
and Cj is q and the total transactions number in Ci and Cj is d. Object D' = q * δ'ij  d * γ′
 h * dij represents the number of the common neighbours between Ci and Cj is q, the

 A chain membrane model with application in cluster analysis 343

total transactions number in Ci and Cj is d, and the goodness is h. Object Cij shows the
goodness between Ci and Cj is the biggest one.

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7: , , , , , ,r r r r r r r r

     
1.1

¬ 1 1 1 2 2 2

:

() 0

, {1, 2, , },
i j ijt t T m m m ij

r

h g a h g a h g a δ

i j n i j

           

 




1.2 :r

p λ

1.3 :

: 2 0 (2) , , {1, 2, , },ij f ij f ij

r

T a d δ a d δ f i j n i j         

1.4

1 1 2 2

:

m m ij

r

h a h a h a d δ λ d θ         

1.5

1 1 2 2

:

m m ij ij

r

h a h a h a d δ c        

 
1.6 :

: 0 1 (1) , {1, 2, , },
i j

ij ijf ij ijf ijc fc f

r

S c d δ c d δ i j n i j         

1.7

1 1 2 2

:

,

0 , {1, 2, , },

ij ij n ijn ij ij ij

ij

r

h c h c h c d δ q γ d δ q γ d δ q

γ d i j n i j

               
    




2 :

: () (1) 0ij ij ij ij

r

D d q δ q γ h d d δ q γ h d d                 

 
3

¬ :

:

0 , 1 , 0
ij

ij ij pq ij ij ijD h d

r

d δ q γ d C d δ g γ d C h 
              

4 :

: (1) 0ij ij

r

D h d h d h     

 5 5.1 5.2 5.3 5.4: , , ,r r r r r


        

5.1

1 1 2 2 1 1 2 2

1 1 1 2 2 2

:

,

ij

n n i n n

j n n n iC

r

ξ h t h t h t q γ h t h t h t

q γ h h t h h t h h t q q γ

               

                  

 


5.2 :

ij ij

r

q δ g γ h d λ      

 344 Y. Zhao et al.

     

     

5.3 :

,

,

ij

ij

it jt itC

it tj tiC

r

q δ g γ q δ g γ q q δ g g γ

q δ g γ q δ g γ q q δ g g γ

              

               

 
5.4

¬ 0

:

, 0

, {1, 2, , },
ij ij

ij ij ijd δ g γ d

ij

r

d δ g γ d δ g γ d δ g γ

d i j n i j

     
           

  

In the initial, 1 * t1  0 * t2  …  0 * tn  1 * γ1, 0 * t1  1 * t2  …  0 * tn  1 * γ2,
…, 0 * t1  0 * t2  …  1 * tn  1 * γn, 0 * cij  1 * 0  cij * 2  …  0 * cijn  0 * δij
 2 * γ and C00 are in membrane 1. Objects 1 * t1  0 * t2  …  0 * tn  1 * γ1, 0 * t1 
1 * t2  …  0 * tn  1 * γ2, …, 0 * t1  0 * t2  …  1 * tn  1 * γn show each
transaction is seen as one cluster in the initial, 0 * cij1  0 * cij2  …  0 * cijn  0 * δij 
2 * γ shows the number of neighbours has not been obtained, and C00 shows the two
clusters need to be merged have not been obtained. Computation begins when p and ξn–k
enter membrane 1.

Neighbours judging stage

Sub-rule r1.1 generates Tij where the coefficient of af in Tij is the sum of the coefficient of
af in ti and tj. The fth item is the common item of pi and pj if the coefficient of af is 2.
Sub-rule r1.3 counts the number of the common items of pi and pj by the coefficient of δij.
If the number of the common items of pi and pj is less than the previously set threshold,
Tij is dissolved by r1.4. Otherwise, cij is generated by r1.5 to record that pi and pj are
neighbours.

Links counting stage

If cif and cjf exist at the same time, transaction pf is the common neighbour of pi and pj,
the coefficient of δij adds 1 to record this by r1.6, i.e., the coefficient of δij shows the
number of links between pi and pj.

Maximum goodness finding stage

Sub-rule r1.7 generates D and D'. In D', the coefficient of dij is the goodness of clusters Ci
and Cj by r2. The coefficients of all dij are decreased at the same time by r4, and the Cij
representing the biggest goodness is obtained by r3.

Clustering merging stage

Rule r5 merges clusters Ci and Cj. Sub-rule r5.1 obtains the new cluster Ci which contains
the transactions in previous Ci and Cj. Sub-rule r5.3 obtains the new number of common
neighbours between the new Ci and other clusters. Sub-rule r5.4 generates the new D'
which is used to measure the goodness of the new clusters.

Above process continues until only k clusters are remained.

 A chain membrane model with application in cluster analysis 345

Table 1 The seven clusters obtained by the ROCK algorithm

Cluster The serial number of data points belonging to the corresponding cluster

1 1, 4, 9, 14, 18-20, 22, 26, 32, 38, 44, 54, 55, 79, 82, 115, 121, 123, 136, 139, 181, 186,
206, 222, 229, 232, 244, 252, 262, 270, 272, 281, 300, 312, 316, 328, 331, 358, 381,
386, 400, 403, 415, 418, 423, 492, 493, 506, 524, 533, 535, 543, 557, 566, 569, 580,
591, 594, 596, 599, 600, 614, 654, 655, 663, 664, 695, 698, 699, 701, 726, 733, 734,
738, 749, 777, 786, 789, 795, 796, 799, 803, 813, 814, 815, 836, 838, 842, 860, 907,
909, 910, 928, 933, 943, 950, 951, 957, 967, 985, 1000

2 2, 3, 6-8, 10-13, 21, 23-25, 27, 28, 31, 33-35, 40-42, 45-53, 56, 58-60, 62-65, 67-69,
72, 74, 75, 78, 80, 85, 87-89, 92-94, 96-100, 102-111, 114, 116, 118, 122, 125, 127,
129-132, 134, 138, 140-142, 144, 145, 148-151, 153, 156-162, 164-170, 172, 174-
180, 184, 185, 187, 189, 190, 193, 195, 197-199, 201-203, 205, 207-212, 215-219,
221, 223, 225-228, 230, 233, 235, 237-243, 246, 248, 249, 251, 254-256, 258-264,
268, 269, 271, 273-278, 280, 282, 284-289, 292-297, 302, 304, 305, 307-309, 311,
313, 315, 318, 321, 323-327, 329, 330, 332-335, 337, 338, 340-343, 345, 348, 352-
355, 357, 359, 360, 364, 365, 367, 369, 371-373, 375, 376, 378-380, 383, 384, 387,
389-393, 395, 397, 398, 401, 402, 404-411, 413, 414, 416, 419, 421, 422, 424, 425,
427, 428, 431, 432-434, 436, 438-449, 451-453, 455, 457-464, 466-472, 478, 480-
482, 486, 487, 489, 490, 494-496, 498-505, 512, 517-523, 526-528, 530-532, 534,
537, 539, 541, 544, 546, 547, 550, 553, 555, 556, 559-561, 565, 567, 570, 571, 573-
576, 578, 579, 581, 582-586, 590, 593, 595, 597, 598, 602, 604-606, 608, 609, 615,
616, 618, 619, 621, 622, 624, 626, 629, 630, 632, 634-638, 640, 641-645, 647-649,
651-653, 656, 658, 659, 661, 662, 665-671, 675, 678-680, 682, 684, 686, 688-693,
696, 697, 703-707, 709, 710, 711, 713-719, 721, 722, 725, 727, 729-731, 735, 736,
739, 742-748, 751, 752, 754-757, 759-763, 765, 769-773, 776, 778, 779-781, 783-
785, 788, 790-794, 797, 800-802, 804-809, 811, 812, 816-818, 820, 821, 823-826,
829, 833-835, 837, 839, 840, 843, 845, 847-849, 851, 852, 856, 858, 859, 861-866,
868, 870-873, 875-880, 883-885, 887-890, 892-901, 905, 911, 913, 916, 917, 923,
930, 934, 937, 941, 948, 952, 956, 960, 977, 979, 982, 990, 991, 997, 999

3 5, 15, 17, 57, 66, 81, 84, 86, 95, 101, 124, 126, 128, 146, 147, 152, 191, 204, 250,
267, 279, 298, 301, 310, 346, 349, 351, 361-363, 370, 382, 388, 396, 412, 420, 429,
456, 497, 507, 508, 516, 536, 542, 545, 552, 564, 568, 592, 601, 603, 607, 611-613,
617, 631, 639, 657, 673, 694, 700, 702, 712, 724, 728, 732, 758, 766, 775, 798, 846,
854, 882, 902-904, 906, 908, 912, 914, 915, 919-922, 925-927, 931, 932, 936, 938,
939, 942, 944, 946, 947, 949, 953-955, 961, 962, 965, 966, 969-971, 974, 976, 980,
983, 984, 986, 987-989, 992, 993, 995, 996

4 16, 29, 37, 43, 61, 70, 83, 90, 91, 112, 117, 120, 143, 154, 163, 171, 182, 183, 188,
196, 214, 220, 231, 234, 253, 257, 266, 283, 290, 291, 339, 350, 356, 366, 374, 377,
394, 399, 430, 465, 474, 476, 477, 484, 488, 510, 511, 514, 515, 525, 529, 538, 548,
551, 577, 587-589, 610, 620, 625, 628, 660, 672, 676, 677, 687, 708, 720, 740, 741,
764, 768, 782, 787, 822, 831, 844, 853, 855, 867, 869, 929, 935, 994

5 30, 36, 39, 71, 73, 76, 77, 113, 119, 133, 135, 137, 155, 173, 192, 194, 200, 213, 224,
236, 245, 247, 265, 299, 303, 314, 317, 319, 320, 322, 344, 347, 368, 417, 426, 435,
437, 454, 473, 475, 479, 483, 485, 491, 509, 513, 540, 549, 554, 558, 562, 563, 572,
623, 627, 646, 650, 674, 681, 683, 723, 737, 750, 753, 767, 774, 810, 819, 827, 828,
830, 832, 841, 850, 857, 881, 886, 924, 959, 998

6 306

7 336, 385, 450, 633, 685, 874, 891, 918, 940, 945, 958, 963, 964, 968, 972, 973, 975,
978, 981

 346 Y. Zhao et al.

5.2 Time complexity analysis

The time complexity of this algorithm is (1 + 1 + 1 + 1 + 1 + 1 + 1) + (1 + 1 + gmax + (1
+ 1 + 1 + 1)) * (n – k) = O(gmax * n), while the time complexity of the conventional
ROCK algorithm is O(n2 + nmmaxma + n2logn) (Guha et al., 2000). Where, gmax is the
value of the maximum goodness, mmax is the maximum number of the neighbours, and ma
is the average number of the neighbours.

The chain P systems solve the ROCK algorithm in linear time.

5.3 Test and analysis

Mushroom database of UCI dataset contains 8,124 data points. Each data point contains
22 properties. All data points are divided into two classes: edible and poisonous. In this
paper, the first 1,000 data points are used. The 1,000 data points are numbered from 1 to
1000 following the order. Two data points with 18 or more same property values are seen
as neighbours. The seven clusters obtained are listed in Table 1.

As shown in the table, the sizes of the first cluster, the third cluster, the fourth cluster
and the fifth cluster are almost the same (there sizes are 102, 122, 85 and 80
respectively). The second cluster is the largest cluster with the size of 591 and the sixth
cluster is the smallest cluster with the size of 1. There is a big difference between cluster
sizes. All clusters obtained are pure clusters, i.e., in any cluster, all data points are either
all poisonous or all edible. The error rate is 0%.

6 Conclusions

In this paper, a new chain P system is proposed. The chain membranes, objects and rules
are presented. Computational power and efficiency are analysed. It is proved that the
chain P systems are universal, and they can solve the NP problems without the expansion
of membranes. The graph clustering algorithm and the ROCK algorithm based on
the chain P system are given as applications. Results show that improvements of
conventional algorithms by chain P systems are non-trivial. For the future research, it is
worth investigating other variants of P systems according to the structure and function of
the biological membrane. It is also worth improving other data mining algorithms by
using P systems, such as spectral clustering, support vector machines, and genetic
algorithms, etc. (Han et al., 2012).

Acknowledgements

Project supported by National Natural Science Foundation of China (No. 61806114,
61876101, 61802234, 61472231, 61502283, 61640201, 61602282), China Postdoctoral
Science Foundation (No. 2018M642695, 2019T120607), Natural Science Foundation of
Shandong Province ZR2016AQ21) and Funding for Study Abroad Program by the
Government of Shandong Province.

 A chain membrane model with application in cluster analysis 347

References

Cabarle, F., Adorna, H., Jiang, M. and Zeng, X. (2017) ‘Spiking neural P systems with scheduled
synapses’, IEEE Transactions on Nanobioscience, DOI: 10.1109/TNB.2017.2762580.

Guha, S., Rastogi, R. and Shim, K. (2000) ‘Rock: a robust clustering algorithm for categorical
attributes’, Information Systems, Vol. 25, No. 5, pp.345–366.

Han, J., Kambr, M. and Pei, J. (2012) Data Mining: Concepts and Techniques, Elsevier Inc.,
Amsterdam, Netherlands.

Ju, Y., Zhang, S., Ding, N., Zeng, X. and Zhang, X. (2016) ‘Complex network clustering by a
multiobjective evolutionary algorithm based on decomposition and membrane structure’,
Scientific Reports, DOI: 10.1038/srep33870.

Liu, X. and Xue, J. (2017) ‘A cluster splitting technique by Hopfield networks and P systems on
simplices’, Neural Processing Letters, Vol. 46, pp.1–24.

Liu, X., Li, Z., Liu, J., Liu, L. and Zeng, X. (2015a) ‘Implementation of arithmetic operations with
time-free spiking neural P systems’, IEEE Transactions on Nanobioscience, Vol. 14, No. 6,
pp.617–624.

Liu, X., Suo, J., Leung, S., Liu, J. and Zeng, X. (2015b) ‘The power of time-free tissue P systems:
attacking NP-complete problems’, Neurocomputing, Vol. 159, No. 1, pp.151–156.

Liu, X., Zhao, Y. and Sun, M. (2017) ‘An improved apriori algorithm based on an
evolutioncommunication tissue-like P system with promoters and inhibitors’, Discrete
Dynamics in Nature and Society, Vol. 2017, No. 1, pp.1–11.

Liu, X., Zhao, Y. and Sun, W. (2018) ‘Tissue P systems with cooperating rules’, Chinese Journal
of Electronics, Vol. 27, No. 2, pp.324–333.

Pan, L., Păun, G., Pérez-Jiménez, M.J. (2011) ‘Spiking neural P systems with neuron division and
budding’, Science China Information Sciences, Vol. 54, No. 8, pp.1596–1607.

Păun, G., Rozenberg, G. and Salomaa, A. (2010) The Oxford Handbook of Membrane Computing,
Oxford University Press, Oxford, UK.

Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Luo, X. and Huang, X. (2017) ‘Spiking
neural P systems with multiple channels’, Neural Networks the Official Journal of the
International Neural Network Society, Vol. 95, No. 66, pp.66–71.

Song, B., Song, T. and Pan, L. (2015) ‘Time-free solution to SAT problem by P systems with
active membranes and standard cell division rules’, Natural Computing, Vol. 14, No. 4,
pp.673–681.

Song, T. and Pan, L. (2015) ‘Spiking neural P systems with rules on synapses working in maximum
spikes consumption strategy’, IEEE Transactions on Nanobioscience, Vol. 14, No. 1,
pp.38–44.

Song, T. and Wang, X. (2015) ‘Homogenous spiking neural P systems with inhibitory synapses’,
Neural Processing Letters, Vol. 42, No. 1, pp.199–214.

Song, T., Gong, F., Liu, X., Zhao, Y. and Zhang, X. (2016) ‘Spiking neural P systems with white
hole neurons’, IEEE Transactions on NanoBioscience, Vol. 15, No. 7, pp.666–673.

Song, T., Luo, L., He, J., Chen, Z. and Zhang, K. (2014a) ‘Solving subset sum problems by
timefree spiking neural P systems’, Applied Mathematics and Information Sciences, Vol. 8,
No. 1, pp.327–332.

Song, T., Zheng, H. and He, J. (2014b) ‘Solving vertex cover problem by tissue P systems with cell
division’, Applied Mathematics and Information Science, Vol. 8, No. 1, pp.333–337.

Song, T., Rodrguez-patn, A., Zheng, P. and Zeng, X. (2017) ‘Spiking neural P systems with
colored spikes’, IEEE Transactions on Cognitive and Developmental Systems,
Vol. 10, No. 4, pp.1106–1115.

Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. and Rodrguez-patn, A. (2019a) ‘Spiking neural P
systems with learning functions’, IEEE Transactions on NanoBioscience, Vol. 18, No. 2,
pp.176–190.

 348 Y. Zhao et al.

Song, T., Zheng, P., Wong, M., Jiang, M. and Zeng, X. (2019b) ‘On the computational power of
asynchronous axon membrane systems’, IEEE Transactions on Emerging Topics in
Computational Intelligence, 29 April, No. 1, pp.1–9, DOI: 10.1109/TETCI.2019.2907724.

Wang, J., Hoogeboom, H.J. and Pan, L. (2011) ‘Spiking neural P systems with neuron division’,
Membrane Computing, Vol. 6501, pp.361–376.

Wang, T., Wei, X., Huang, T., Wang, J., Peng, H., Prez-Jimnez, M. and Valencia-Cabrera, L.
(2019a) ‘Modeling fault propagation paths in power systems: a new framework based on event
SNP systems with neurotransmitter concentration’, IEEE Access, Vol. 7, pp.12798–12808.

Wang, J., Peng, H., Yu, W., Ming, J., Prez-Jimnez, M., Tao, C. and Huang, X. (2019b)
‘Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission
networks’, Engineering Applications of Artificial Intelligence, Vol. 82, pp.102–109.

Wang, X., Song, T., Gong, F. and Zheng, P. (2016) ‘On the computational power of spiking neural
P systems with self-organization’, Scientific Reports, DOI: 10.1038/srep27624.

Zeng, X., Xu, L., Liu, X. and Pan, L. (2014) ‘On languages generated by spiking neural P systems
with weights’, Information Sciences, Vol. 278, No. 10, pp.423–433.

Zeng, X., Zhang, X. and Pan, L. (2009) ‘Homogeneous spiking neural P systems’, Fundamenta
Informaticae, Vol. 97, No. 1, pp.275–294.

Zeng, X., Zhang, X., Song, T. and Pan, L. (2014) ‘Spiking neural P systems with thresholds’,
Neural Computation, Vol. 26, No. 7, pp.1340–1361.

Zhang, X., Pan, L. and Paun, A. (2017) ‘On the universality of axon P systems’, IEEE Transactions
on Neural Networks and Learning Systems, Vol. 26, No. 11, pp.2816–2829.

Zhang, X., Wang, B. and Pan, L. (2014a) ‘Spiking neural P systems with a generalized use of
rules’, Neural Computation, Vol. 26, No. 12, pp.2925–2943.

Zhang, X., Zeng, X., Luo, B. and Pan, L. (2014b) ‘On some classes of sequential spiking neural
P systems’, Neural Computation, Vol. 26, No. 5, pp.974–997.

Zhao, Y., Liu, X. and Wang, W. (2016) ‘Spiking neural P systems with neuron division and
dissolution’, PLOS One, DOI: 10.1371/journal.pone.0162882.

