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Abstract: Membrane computing is a kind of bio-inspired parallel distributed 
computing paradigm which can reduce computational complexity by the 
strategy of a space-time tradeoff. Traditionally, there are three kinds of 
membrane computing models (P systems) based on the tree and the graph 
topological structures. In this paper, a new P system with chain topological 
structure is proposed which is called the chain P systems. In the chain  
P systems, membranes, objects and rules are all in the form of chains which can 
store more information and therefore further improve the computational 
efficiency. The computational power and efficiency of the chain P systems are 
analysed. The graph clustering and the ROCK clustering algorithms based on 
the chain P systems are given as applications. 
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1 Introduction 

Biological systems, such as cells, tissues, and human brains, have deep computational 
intelligences. Biologically inspired computing, or bio-inspired computing in short, 
focuses on abstracting computing ideas from biological systems to construct computing 
models and algorithms. Membrane computing is a lately initiated research area of  
bio-inspired computing in 2002, which seeks to discover new computational facility from 
the dynamics of cells, particularly of the cellular membranes (Păun et al., 2010). The new 
models are distributed and parallel bio-inspired computing facilities, usually called  
P systems. There are three mainly investigated P systems, cell-like P systems, tissue  
P systems, and neural-like P systems (and their variants, see, e.g., Cabarle et al., 2017; 
Zeng et al., 2014; Song and Wang, 2015; Song et al., 2016; Song and Pan, 2015; Zeng  
et al., 2009; Zhang et al., 2014a, 2014b; Peng et al., 2017; Zhao et al., 2016; Liu et al., 
2018; Song et al., 2019a, 2017). It has been proved that many P systems are universal, 
that is, they are able to do what a Turing machine can do efficiently (Song et al., 2019b; 
Wang et al., 2016; Zeng et al., 2014; Zhang et al., 2017). The parallel evolution 
mechanism of variants of P systems has been found to perform well in doing 
computation, even solving computational hard problems. Therefore, P systems have been 
introduced to many fields gradually (Wang et al., 2019a; Ju et al., 2016; Liu et al., 2015a; 
Liu et al., 2017; Liu and Xue, 2017; Wang et al., 2019b). 

Researchers pay close attention to the computational efficiency of P systems, 
especially the judgment whether NP-complete problems have solutions or not in feasible 
time (Song et al., 2014a, 2014b; Pan et al., 2011; Wang et al., 2011). In previous studies, 
if a NP-complete problem has a solution, a specific object is output to show that; 
otherwise, another object or nothing is output to show that. However, the solutions need 
to be found out in many situations. For instance, the register allocation problem is an 
application of SAT problem. This problem aims to build a mapping relationship between 
the virtual registers and the physical registers, and realises the rational utilisation of 
physical register resources. In this case, we need to judge whether a good solution exists, 
while searching the solution by distributing the physical register resources according to 
the solution. In applications, many problems can be transformed into graph colouring 
problems, which is equivalent to SAT problems. To solve these problems, exact solutions 
are also essential. 

For this purpose, the chain thought in DNA computing is introduced into the  
P systems and a new variant of P systems called the chain P system is proposed in this 
paper. In the chain P systems, the concepts of membranes, objects and rules are expended 
to chains, and the operations of crossover, mutation and so forth are transplanted. The 
chain P systems can record more information and realise the same function with less 
computing resources. Each chain object represents one solution, and the redundant 
objects can be removed from the system which can be used to remove the wrong results. 
Objects which represent all possible results are output. Chain P systems which give 
uniform solutions to SAT problem and Hamilton Path problem (HPP), which work in a 
deterministic way, not using the membrane division rules, are constructed as examples in 
this paper. 

The application of P systems is another research hotspot in the field. Although  
P systems have been used in many fields, the intensive coupling between membrane 
computing and the optimisation is still an open problem. For this purpose, two 
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applications in clustering: the graph clustering and the ROCK clustering based on the 
chain P systems are presented. These two applications also show the advantage of the 
chain P systems. 

The contributions of this paper focus on two folds: for membrane computing, a new 
variant of P systems is proposed which can decrease the computing resources; for 
clustering analysis, the new algorithms combined with the chain P systems are presented 
which can reduce the time complexity of data processing and satisfy the requirement of 
improving the processing speed of the big data. 

The paper is organised as follows. The chain P system is proposed in Section 2. 
Section 3 analyses the computational power and efficiency of the chain P systems. 
Section 4 and Section 5 give the graph clustering algorithm and the ROCK algorithm 
based on the chain P systems. Conclusions are given in Section 6. 

2 The chain P systems 

Several concepts are defined firstly. If no other membranes are in a membrane, this 
membrane is called an elementary membrane. The ordered chain consisting of several 
linked membranes is called a chain membrane. Each membrane in the chain membrane is 
called a cell membrane. Each symbol in the alphabet is called an elementary object. The 
ordered object consisting of several linked symbols is called a chain object. 

The formal description of the chain P system is as follows. 

 1 2, , , , , , , , ,m in outO μ w w w R ρ i i    

 O is the alphabet which includes all elementary objects of the system. 

 μ is the membrane structure. 

 wj(1 ≤ j ≤ m) is the initial chain objects in membrane j, and object λ shows no object 
is in the current membrane. 

 R is the set of the chain rules. A chain rule is composed of n sub-rules with the form 
of rj = {rj.1, rj.2, …, rj.n} which is executed from left to right. If a certain sub-rule can 
not be executed, the execution of this chain rule is end, and the remaining sub-rules 
are no longer executed. 

 ρ defines the partial ordering relationship of the rules, i.e., rules with higher orders 
are executed with higher priority. 

 iin is the label of the membrane where the objects are put into. 

 iout is the label of the membrane where the computational result is placed. 

If iout = 0, the computational result is reserved in the environment. 

2.1 The chain membranes 

The membranes exist in the form of chain σi = ri1 * σi1  ri2 * σi2  …  rin * σin (the * 
can be omitted if there is no ambiguity). Where, σi1, σi2, …, σin represent the cell 
membranes in the chain membrane σi, ri1, ri2, …, rin are integers, rij * σij represents this 
chain membrane σi contains |rij| copies of σij. If rij > 0, σij carries positive charge; 
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otherwise, σij carries negative charge. Figure 1 shows an example of the chain 
membranes. 

Figure 1 p chain membranes 

 

Notes: Where the chain membrane σ1 contains n cell membranes, the chain membrane σ2 
contains m cell membranes, …, and the chain membrane σp contains t cell 
membranes. 

Figure 2 The chain membrane σ1 contains n cell membranes σ11, σ12, …, σ1n 

 

Notes: σ1 contains p – 1 child chain membranes σ2, σ3, …, σp, then each child chain 
membrane σi(2 ≤ i ≤ p) contains n cell membranes σi1, σi2, …, σin, and the objects 
in σ1j are the union of all objects in cell membranes σ2j, σ3j, …, σpj. 

Figure 3 The whole structure of the tree topological P systems 
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The whole system has two topological structures: tree and graph. In the tree topological  
P systems, the relationship among the chain membranes is inclusion, i.e., the cell 
membrane of the parent chain membrane contains the corresponding cell membranes of 
the child chain membranes. Figure 2 and Figure 3 show examples of the tree topological 
P systems structure. Figure 4 gives an example of the graph topological P systems 
structure. 

Figure 4 The whole structure of the graph topological P systems 

 

2.2 The chain objects 

The objects exist in the form of chain a = r1 * x1  r2 * x2  …  rn  xn (the * can be 
omitted if there is no ambiguity). Where, rj * xj represents this chain object a contains |rj| 
copies of xj. If rj > 0, xj is a positive object; otherwise, xj is a negative object. 

The structured objects can store a large amount of information. For instance, to 
calculate the value of 201 + 12, two chain objects a1 = 2x3  x1 and a2 = x2  2x1 are 
constructed. Each object represents a number. By two rules a3 = a1 + a2 and 10xi → xi+1,  
i ≥ 1, the new object a3 = 2x3  1x2  3x1 is obtained which means the result is 213. If the 
traditional unstructured objects are used, 213 objects are needed. The structured objects 
can improve the computational efficiency and reduce the space complexity. 

2.3 The chain rules 

There are two types of rules: rules on the chain objects and rules on the chain 
membranes. The traditional rules can also be used in the chain P systems, and several 
new types of rules are designed. 

2.3.1 Rules on objects 

For arbitrary two chain objects a1 = r1 * x1  r2 * x2  …  rn * xn and a2 = h1 * x1  h2  
* x2  …  hn * xn: 

 Object addition rule a3 = a1 + a2: 

The sum of a1 and a2 is a1 + a2 = (r1 + h1)x1  (r2 + h2)x2  (rn + hn)xn, a3 is also a 
chain object. 
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 Object subtraction rule a3 = a1 – a2: 

The difference of a1 and ai2 is a1– a2 = (r1 – h1) * x1  (r2 – h2) * x2  …  (rn – hn) 
* xn, a3 is also a chain object. 

 Object crossover rule (a1$ta2): 

Given a cross point t, cross a1 = r1 * x1  …  rt * xt  rt+1 * xt+1  …  rn * xn and 
a2 = h1 * x1  …  ht * xt  ht+1 * xt+1  …  hn * xn, the obtained objects are  
a1 = r1 * x1  …  rt * xt  ht+1 * xt+1  …  hn * xn and a2 = h1 * x1  …  ht * xt 
 rt+1 * xt+1  …  rn * xn. 

 Object variation rule a: rt * xt → r't * x't: 

Given a variation point t, a varies to r1 * x1  r2 * x2  …  r't * x't  … rn * xn. 
Note that xt and x't can be the same one. 

 Extended object variation rule 1 1 2 2 1 1 2: m mt t t t t t t t ta r x r x r x r x r            

2 :m mt t tx r x       

Given m(m ≥ 1) variation points t1, t2, …, tm, a varies to 1 1t t t tr x r x        

2 2 .m mt t t t n nr x r x r x             

2.3.2 Rules on membranes 

For chain membrane σq+1 = r(q+1)1 * σ(q+1)1  r(q+1)2 * σ(q+1)2  …  r(q+1)n * σ(q+1)n and its 
child membrane σq = rq1 * σq1  rq2 * σq2  …  rqn * σqn: 

 Parent-child communication rule [σq, σq+1]: (a, up); (b', in) → (b, down); (a', in) or 
[σq+1, σq]: (b, down); (a', in) → (a, up); (b', in), a, a', b, b'  O*: 

Object a in σq evolves to a' and enters its parent membrane σq+1, at the same time, b 
in σq+1 evolves to b' and enters its child membrane σq. Note that for the skin 
membrane, its parent membrane is the environment. 

 Extended parent-child communication rule [σq1, …, σqn, σq+1]: (a1, …, an, up); (b1, …, 
bn, in) → (b, down); (a'1, …, a'n, in) or [σq+1, σq1, …, σqn]: (b, down); (a'1, …, a'n, in) 
→ (a1, …, an, up); (b1, …, bn, in), a1, …, an, a'1, …, a'n, b, b1, …, bn  O: 

Objects a1, …, an in σq1, …, σqn evolve to a'1, …, a'n and enter their parent membrane 
σq+1, at the same time, b in σq+1 evolves to b1, …, bn and enters its child membranes 
σq1, …, σqn. 

2.4 The system computational process 

Rules are executed in non-deterministic maximally parallel manner in each membrane, 
i.e., at any step, if more than one rule can be executed but the objects in the membrane 
can only support some of them, a maximal number of rules will be executed. Each  
P system contains a global clock as the timer, and the execution time of one rule is set to 
a time unit. The computation halts if no rule can be executed in the whole system. The 
computational results are represented by the types and numbers of specified objects in a 
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specified membrane. Because objects in a P system evolve in maximally parallel, the 
system computes very efficiently. 

3 Computational power and efficiency analysis 

3.1 Computational power analysis 

The computational power of the chain P systems is analysed by simulating the register 
machine. 

It has been proved that a register machine with three registers can generate the set of 
the length of the recursively enumerable language. Therefore, a register machine with 
three registers M = (m, H, l0, lh, I) is considered. The generated number stores in  
register 1 which number will not decrease. Registers 2 and 3 are empty when the register 
machine halts. The following chain P system is constructed to simulate M. 

 1 2 3 4, , , , , , , ,r outO μ w w w w R ρ i   

where 

 O = {a}  {l  H} 

 μ = [[ ]1[ ]2[ ]3]4 

 wi = λ, 1 ≤ i ≤ 3, w4 = l0 

 ρ = {r1 = r2, r3 > r4} 

 iout = 1 

 R. 

In r, membranes 1, 2 and 3 are corresponding to registers 1, 2 and 3, and the number of 
objects a in a membrane represents the value of the corresponding register. The 
instructions in the register machine are simulated by rules. 

For each add instruction li: (ADD(r), lj, lk), r = 1, 2, 3, the following rules are 
introduced: 

     1 4: , : , , ( , )( , )r i jr σ σ l down l in λ up a in  

    2 4: , : , , ( , )( , )r i kr σ σ l down l in λ up a in  

The two rules can simulate the add instruction. At one step, r1 or r2 is chosen  
non-deterministically to execute. If r1 is chosen, li evolves to a and enters its child 
membrane σr, and lj enters σ4 at the same step. Through this rule, the number of a in 
membrane r increases by 1, and the next instruction changes to lj. Similarly, if r2 is 
chosen, the number of a in membrane r increases by 1, and the next instruction changes 
to lk. 

For each sub instruction li: (SUB(r), lj, lk), r = 1, 2, 3, the following rules are 
introduced: 

    3 4: , : , , ( , )( , )r i jr σ σ l down l in a up λ in  
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    4 4: , : , , ( , )( , )r i kr σ σ l down l in λ up λ in  

The two rules can simulate the sub instruction. At one step, if the number of a in 
membrane r is not 0, r3 executes. Object li is dissolved, and a evolves to lj and enters σ4 at 
the same step. Through this rule, the number of a decreases by 1, and the next instruction 
changes to lj. If the number of a in membrane r is 0, r3 can not execute, and r4 obtains the 
chance to execute. Object li is dissolved, and lk enters σ4 at the same step. The number of 
a in membrane r is still 0, and the next instruction changes to lk. 

The halt instruction is simulated when lh appears in membrane 4. 
The chain P system r simulates the register machine M, therefore, N(M) = N(r). 

3.2 Computational efficiency analysis 

Uniform solutions to two NP problems (SAT problem and HPP) working in a 
deterministic way are used to show the computational efficiency of the chain P systems 
without the expansion of membranes. 

3.2.1 SAT problem 

SAT (the satisfiability of conjunctive normal form expression) problem is one of the most 
typical NP-complete problems. For a Boolean variable set X = {x1, x2, …, xn}, a literal li 
is xi or ¬xi for 1 ≤ i ≤ n. A clause Ci is a disjunction of literals 1 2 ,ri n n nC l l l     1 ≤ 

r ≤ n. A conjunctive normal form (CNF, for short) is a conjunction of clauses C1 ˄ C2 ˄ 
… ˄ Cm. An assignment is a mapping X → {0, 1} from each variable xi to its value  
(value 1 represents true and value 0 represents false.). For example, X = {x1, x2, x3}, the 
conjunctive normal form is (x1 ˅ ¬x2) ˄ (x1 ˅ x3). The x1 ˅ ¬x2 and x1 ˅ x3 are the two 
clauses. The first clause contains two literals x1 and ¬x2, and the second clause contains 
two literals x1 and x3. If an assignment of x1, x2, …, xn can be found, which makes at least 
one literal true in each clause and then makes all m clauses true, this SAT problem is 
satisfiable. Otherwise, this SAT problem is unsatisfiable. In the above example, let  
x1 = x2 = x3 = 1, the value of the conjunctive normal form is (1 ˅ 0) ˄ (1 ˅ 0) = 1 ˄ 1 = 1. 
Therefore, the SAT problem is satisfiable. 

The formal definition of SAT problem is as follows: 

 Problem 1 – NAME: SAT. 

Instance: A set of clauses C = {C1, C2, …, Cm}, which is built on a Boolean variable 
set X = {x1, x2, …, xn}. 

Question: Is there an assignment of Boolean variables x1, x2, …, xn that can make the 
values of all clauses true? 

SAT(n, m) denotes the set of all instances of the SAT problem having n variables and m 
clauses. In this section, a uniform solution working in a deterministic way is constructed 
by the chain P systems, which can solve all SAT(n, m) problems in linear time. 

The instance parameters need to enter a chain P system, therefore the CNF needs to 
be encoded as object a = d11 * a11  d12 * a12  …  d1n * a1n * d21 * a21  d22 * a22  … 
 d2n * a2n  …  dm1 * am1  dm2 * am2  …  dmn * amn. The coefficient dij of aij has 
three values: 0, 1 and –1. The value 0 represents the ith clause does not contain the literal 
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xj or ¬xj, and the value 1 (resp. –1) represents the ith clause contains the literal xj (resp. 
¬xj). 

The formal definition of the chain P system for SAT(n, m) problems is as follows. 

 , , , , , ,SAT in outO μ w R ρ i i   

where 

 O = {aji, vi, sj, φ}, 1 ≤ i ≤ n, 1 ≤ j ≤ m 

 μ = [1]1 

 w = λ 

 ρ = {r1 > r2} 

 iin = 1 

 iout = 1 

 R. 

Other objects used in SAT are explained. Object v = h1 * v1  h2 * v2  …  hn * vn 
shows the assignment of all Boolean variables. The coefficient hi of vi has two values: 1 
and –1. The value 1 (resp. –1) represents the value of the variable xi is set to 1 (resp. 0). 
Object s = h1 * v1  h2 * v2  …  hn * vn  d11 * a11  d12 * a12  …  d1n * a1n  d21 
* a21  d22 * a22  …  d2n * a2n  …  dm1 * am1  dm2 * am2  …  dmn * amn  t1 * s1 
 t2 * s2  …  tm * sm uses to obtain the satisfiable assignment. Object φ has only one 
elementary object which is used to control the computational process. 

 1 1.1 1.2 1.3 1.4: , , ,r r r r r  

 
       
       

 
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1 1 2 2 1 1 2 2

1 11 11 2 12 12 1 1 1 21 21

2 22 22 2 2 1 1 1 2 2

2 1 2

:

0 0 0

n n n naφ

n n n

n n n m m m

m n nn mn m

r

h v h v h v h v h v h v

h d a h d a h d a h d a
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            
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1.2
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 
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 2 2.1 2.2 2.: , , , nr r r r  

 

2.1

1 1 2 2 1 1 2 2 1 1
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:
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1, 1
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Computation begins when v = v1  v2  …  vn and a enter membrane 1. Object v = v1  
v2  …  vn means the values of all xi are set to 1 in the given assignment. 

Generating stage 

The priority of r1 is higher than that of r2, however, the promoter φ is not in the 
membrane in the beginning, therefore, r2 executes firstly. The chain rule r2 contains n 
sub-rules. At step 1, r2.1 divides the initial v into v1 = v1v2  …  vn and v2 = –v1  v2  
…  vn showing that the value of x1 can be 1 or –1 in an assignment. Sub-rule r2.2 divides 
v1 into v11 = v1  v2  …  vn and v12 = v1  –v2  …  vn, and divides v2 into v2 = –v1 
 v2  …  vn and v2 = –v1  –v2  …  vn at step 2. This shows the value of x2 can be 
1 or –1 in an assignment. And so on, until r2.n divides each h1 * v1  h2 * v2  …  hn * 
vn into h1 * v1  h2 * v2  …  hn * vn and h1 * v1  h2 * v2  …  –hn * vn showing that 
the value of xn can be 1 or –1 in an assignment. Rule r2 generates 2n chain objects v 
showing all combinations of the values of xi. An object φ is generated by r2.n showing the 
generation stage is over. 

Checking stage 

With φ, r1 begins to execute. Each v evolves to s by r1.1. In the generated s, h1 * v1  h2 * 
v2  …  hn * vn shows the assignment of xi, (h1 + d21) * a21  (h2 + d22) * a22  …  (hn 
+ d2n) * a2n  …  (h1 + dm1) * am1  (h2 + dm2) * am2  …  (hn + dnn) * amn shows the 
relationship between the assignment and the CNF, and 0 * s1  0 * s2  …  0 * sm 
shows the value of each clause in the initial. The coefficient of vi has two values: 1 and  
–1, and the coefficient of aij has three values: 0, 1 and –1. Therefore, the relationship 
between the values of the two coefficients and the satisfiability of the corresponding 
literal is as follows: 

 hj = 1, dij = 1, hj + dij = 2, the value of literal xj in clause Ci is true 

 hj = 1, dij = 0, hj + dij = 1, the clause Ci dose not contain the literal xj 

 hj = 1, dij = –1, hj + dij = 0, the value of literal xj in clause Ci is false 
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 hj = –1, dij = 1, hj + dij = 0, the value of literal xj in clause Ci is false 

 hj = –1, dij = 0, hj + dij = –1, the clause Ci dose not contain the literal xj 

 hj = –1, dij = –1, hj + dij = –2, the value of literal xj in clause Ci is true. 

Therefore, the certain literal xj in clause Ci is true when the coefficient value of aij is 2 or 
–2; false otherwise. 

Sub-rule r1.2 changes the coefficient value of si from 0 to 1 if the coefficient value of 
aij is 2 or –2 to show that Ci is true. A SAT problem is satisfiable when all m clauses are 
true, i.e., s with the coefficient values of all si equal to 1 needs to be found. Sub-rule r1.3 
dissolves s with the coefficient values of several si equal to 0, and r1.4 evolves s to v 
abstracting the assignment. 

Computational resources and complexity 

 the initial chain objects number: 2  Θ(1) 

 the membranes number: 1  Θ(1) 

 the number of rules: 2  Θ(1) 

 the number of sub-rules: n + 4  Θ(n) 

 the computational steps: n + 4  Θ(n). 

The chain P system solves the SAT problem in linear time with linear computational 
resources, and all solutions can be obtained through it. The traditional P systems solve the 
SAT problem by membrane division rules, while the chain P system realises the 
computational process without the expansion of membranes (Song et al., 2015). 

3.2.2 Hamilton path problem 

HPP is one of the most typical NP-complete problems. The formal definition of HPP is as 
follows. 

 Problem 2 – NAME: HPP. 

Instance: A graph γ = (N, E), where N = {a1, a2, ꞏꞏꞏ, an} is the set of nodes and  
E = {e'ij, 1 ≤ i, j ≤ n} is the set of edges. 

Question: Is there a Hamilton path in γ which length is n visiting each node from γ 
exactly once? 

HPP(n) denotes the set of all instances of the HPP having n nodes. In this section, a 
uniform solution working in a deterministic way is constructed by the chain P systems, 
which can solve all HPP(n) in linear time. 

The instance parameters need to enter a chain P system, therefore the edges in γ need 
to be encoded as object e'j1j2 which represents there is an edge between aj1 and aj2. 

The formal definition of the chain P system for HPP(n) problems is as follows: 

 , , , , ,HPP in outO μ w R i i   

 O = {q, Vij, it, ej1j2, 1 ≤ q ≤ n + 1, 1 ≤ i, j ≤ n, 0 ≤ t ≤ n} 

 μ = [1[2]2]1 
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 w1 = w2 = λ 

 iin = 1 

 iout = 2 

 R. 

Other objects used in HPP are explained. Object 1 2 11 2 1nj i i ni tv V V V        

22 nt nt     is constructed by 2n + 1 components, where j represents the jth point 

in a path is going to be chosen, jjiV  represents the jth point in a path is aij, jjt  represents 

the occurrence number of aj in a path is tj. Object 1 2j je  represents that there is not an edge 

between 1ja  and 2 .ja  Object 1 21 2 ni i nis V V V     represents the final Hamilton path, 

where jjiV  represents the jth point in a path is .jia  

 1 1 1.1 1.2 1.5: : , , ,R r r r r  

 

 

 

1 2 1 2

1 2 21

1 2 1 2

1 2 1 2

1.1

1 2 1 2 1

1 2 1 2 11 1

1 2 2 1 2 1

1 1 2 1 2 1

:

,

,

j n n

n n

n n

n n

j i i ji ni t t nt j

i i j ni t nt jt

i i j ni t ntt

j i i jn ni t t n t

r

V V V V

V V B V

V V B V

V V V V







 

         

        

        

        

  
  
  


  

    

   
  

   

 

1 2

1.2

¬ 1 2

:

() j je j j

r

e 
 

 1 2 1 2
1

1.3

1 1 2 1 2

:

n n i ij j
n i i ni t t nt e

r

V V V λ


               

1 2 1 2

1.4

1 1 2 1 2 0

:

n nn i i ni t t i nt

r

V V V λ                
 

   
 

 

1 2 1 2

1 2

1.5

1 2 1 1 2 1 2

1 2

1 2 1 2

:

, : , ; ( , )
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1 , , , , , 0 , , ,

n n

n

n i i ni t t nt

i i ni

n n

r

σ σ V V V down λ in

λ in V V V in

i i i j n t t t n

        

   

   

 


 

   
 

2 :R

λ
 

Computation begins when v = 1  V10  V20  …  Vn0  10  20  …  n0 and 

2ij je  enter membrane 1. Object v = 1  V10  V20  …  Vn0  10  20  …  n0 

means each point in a path is not chosen and the occurrence number of each point is zero 
in the initial. The points in a path begin to be chosen from the first point. 
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Generating stage 

The chain rule r1 contains four sub-rules. Sub-rule r1.1 executes n times to generate all 
candidate paths. At step 1, the initial v is divided into v1 = 2  V11  V20  …  Vn0  
 11  20  …  n0, v2 = 2  V12  V20  …  Vn0  10  21  …  n0, ꞏꞏꞏ,  
vn = 2  V1n  V20  …  Vn0  10  20  …  n1 showing that the first point in a 
path can be a1, a2, ꞏꞏꞏ, an. At step 2, v1 is divided into v11 = 3  V11  V21  …  Vn0  
 12  20  …  n0, v12 = 3  V11  V22  …  Vn0  11  21  …  n0, …, 
v1n = 3  V11  V2n  …  Vn0  11  20  …  n1 showing that the second point 
in a path can be a1, a2, …, an. Similarly, vi is divided into vi1 = 3  V11  …  Vi1  … 
 Vn0  12  …  n0, vi2 = 3  V11  …  Vi2  …  Vn0  11  21  …  n0, 
ꞏꞏꞏ, vin = 3  V11  …  Vin  …  Vn0  11  20  …  n1. And so on, until the nth 
point in a path is chosen. Sub-rule r1.1 generates nn chain objects v showing all 
combinations of paths. 

Checking stage 

Sub-rule r1.2 generates 2ij je  which shows the edges not belonging to the graph. Sub-rule 

r1.3 dissolves v which contains the edges not belonging to the graph. Sub-rule r1.4 
dissolves v which does not contain all nodes. In v, iit  shows the occurrence number of ai 

in this path is ti. If a certain ti is 0, ai dose not in this path and the corresponding v is 
dissolved. 

Output stage 

Sub-rule r1.5 deals with the remaining v which contains the final solutions. The 
corresponding s enters membrane 2 which stores the final results. 

Computational resources and complexity 

 the initial objects number: 1 + m  Θ(m) 

 the membranes number: 2  Θ(1) 

 the number of rules: 1  Θ(1) 

 the number of sub-rules: 5  Θ(1) 

 the computational steps: n + 3  Θ(n). 

where m is number of the edges in the graph. The chain P system solves the HPP in linear 
time with linear computational resources, and all solutions can be obtained through this 
system. The traditional P systems solve the HPP by membrane division rules, while the 
chain P system realises the computation process without the expansion of membranes 
(Liu et al., 2015b). 

4 The graph clustering based on the chain P systems 

In this section, a general clustering problem that database X = {a1, a2, ꞏꞏꞏ, an} is clustered 
into k clusters is considered. Data points are transformed into nodes and dissimilarities 
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among the data points are transformed into the edge weights of complete undirected 
graph. The smaller the weight is, the more similar the two data points are. The clustering 
problem is then transformed into a graph theory problem of finding the shortest path 
which length is n visiting each node from the graph exactly once. 

The process of the algorithm is as follows: A shortest path that connects all nodes is 
found; the edges with the k – 1 biggest weights are selected then; the path is divided into 
k parts from the edges selected above finally. The k parts are the k clusters. 

The definition of the dissimilarity matrix is given informally firstly. Matrix D'nn 
between any two data points is: 

11 12 1

21 22 2

1 2

,
              

n

n
nn

n n nn

f f f

f f f
D

f f f

   
     
 
    







 (1) 

where, f'ij is the dissimilarity between ai and aj. Specific calculational method is selected 
depending on the data type. 

The matrix elements f'ij are changed to integer fij by expanding 100 times and 
rounding for membrane computing. By this, the dissimilarity matrix Dnn is obtained: 

11 12 1

21 22 2

1 2

.
              

n

n
nn

n n nn

f f f

f f f
D

f f f

 
 
 
 
 
 







 (2) 

The instance parameters need to enter a chain P system, therefore the weight among the 
nodes needs to be encoded as object f = d11 * f11  d12 * f12  …  d1n * f1n  d21 * f21  
d22 * f22 …d2n * f2n  …  dn1 * fn1  dn2 * fn2  …  dnn * fnn, where dij * fij represents 
the weight between ai and aj is dij. 

4.1 The chain P system for improving the graph clustering 

The formal definition of the chain P system for the graph clustering is as follows. 

 1 2 3 1 2 3, , , , , , , , , ,graph in outO μ w w w R R R ρ i i   

where 

 O = {Vij, S, i, p, fij, Uij, cij, 1 ≤ i, j ≤ n} 

 μ = [1[3]3[2]2]1 

 w1 = w2 = λ, w3 = {x = V11  V21  …  Vn1  0 * S  0 * 1  0 * 2  …  0 * 
n  (n – k) * p, f} 

 ρ = {ri,j > ri,t i = 1, 3, j < t} 

 iin = 3 

 iout = 2 
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 R. 

Other objects used in graph are explained. Object 1 21 2 1ni i nix V V V d S h        

1 2 2 n nh h h p           is constructed by 2n + 2 components, where Vij 

represents the ith point in a path is aj, d * S represents the weight sum of a path is d, hi * i 
represents the occurrence frequency of ai is hi, h * p represents h times mergence of the 
clusters are needed in a path. Object 1 2 1 2 2 3 2 3 1 1n n n ni i i i i i i i i i i iy h U h U h U         

h p   is constructed by n + 1 components, where hij * Uij represents the weight between 

ai and aj is hij, the meaning of h * p is the same with that above. Object 1j ji ic   only 

constructs by one component, which represents that jia  and 1jia   belong to the same 

cluster. 
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Computation begins when f enters membrane 3. 

Generating stage 

In the initial, x = V11  V21  …  Vn10  S0 * 1  0 * 2  …  0 * n  (n – k) * p is 
in membrane 3. Vi,1 represents that all points in a path are set to a1, 0 * S represents the 
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weight sum is set to 0 because no path is formed in the initial, 0 * i represents that the 
occurrence frequency of each data point in the dataset is set to 0, and (n – k) * p 
represents n – k times mergence of the clusters are needed in a path. Rule r3.1 generates 
all solution space. Sub-rule r3.1.1 generates n different f. Each f carries V11, V12, …, V1n 
respectively, which means the first point in a path has n choices: a1, a2, ꞏꞏꞏ, an. At the 
same time, the corresponding coefficient of i adds one. Sub-rule r3.1.2 is executed then. 
Each f generates n different f again. Each f carries V21, V22, …, V2n respectively, which 
means the second point in a path has n choices: a1, a2, ꞏꞏꞏ, an. At the same time, the 
corresponding coefficient of i adds one. And so on, until the nth point in a path is 
chosen. Rule r3.1 generates nn objects f showing all combinations of paths. 

Shortest path search stage 

The path with the minimum weight sum is found which is called the shortest path. The 
weight sum of each path is recorded by the coefficient of S. When all weights of a path 
are add up, the coefficient of S in all f decreases simultaneously by r3.4 until 0 * S 
appearing. The f with 0 * S is changed to 1 2 1 2 2 3 2 3 1 1n n n ni i i i i i i i i i i iy d U d U d U         

( )n k p    and enters σ1 by r3.3.1, other f are dissolved by r3.3.2. 

Division stage 

The n points in a path are divided into k parts from the edges with the k – 1 biggest 
weights according to the preset number of clusters k. This can make the points in the 
same cluster closer, and the points in different clusters more distant. All coefficients of 

1j ji iU   reduce at the same time by r1.2. When the coefficient of a certain 1j ji iU   equals to  

–1, an object 1j ji ic   is produced by r1.1. The coefficient of 1j ji iU   reduces until 

1 2 1 2 2 3 2 3 6 7 6 7 5 ,i i i i i i i i i i i iy d U d U d U p          are produced. These 1j ji ic   show that 

the weight between jia  and 1jia   is one of the n – k shortest weights among all. 

Therefore, jia  and 1jia   belong to the same cluster. All 1j ji ic   enter membrane 2 by r1.3. 

4.2 Time complexity analysis 

The time complexity of this algorithm is n + 1 + smin + 1 + d + 1 = O(n + smin + d), where, 
smin is the value of the minimum weight sum in all paths, and d is the (n – k)th minimum 
weights in the shortest path. 

The chain P system solves the graph clustering in linear time. 

4.3 Test and analysis 

To illustrate how the P system runs specifically, the following simple example is 
considered: cluster 7 integral points (1, 1), (2, 1), (2, 2), (3, 4), (4, 2), (4, 3), (5, 4) into 
two clusters. Obviously, n = 7, k = 2. 

The dissimilarity matrix D77 is constructed firstly. In this example, the Euclidean 
distance is used as the dissimilarity. 
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77

0 1 2 13 10 13 25

1 0 1 10 5 8 18

2 1 0 5 4 5 13

,13 10 5 0 5 2 4

10 5 4 5 0 1 5

13 8 5 2 1 0 2

25 18 13 4 5 2 0

D

 
 
 
 
 

  
 
 
 
 
 

 (3) 

Rules r3.1 and r3.2 are executed firstly generating 7! objects f which means all 
combinations of paths. 

Rules r3.3 and r3.4 find the f representing the shortest path. This f is changed to 

1 2 1 2 2 3 2 3 6 7 6 7 5 ,i i i i i i i i i i i iy d U d U d U p          and enters σ1, other f are dissolved. 

In this example, one of the four shortest paths is obtained randomly: 

1 7-4-6-5-3-2-1 

2 4-7-6-5-3-2-1 

3 1-2-3-5-6-4-7 

4 1-2-3-5-6-7-4. 

Rules r1.1, r1.2 and r1.3 generate 1j ji ic   which means jia  and 1jia   are in one cluster, and 

put them into membrane 2. If the first path is chosen, the two clusters can be {4, 6, 7}, 
{1, 2, 3, 5} or {4, 5, 6, 7}, {1, 2, 3} because the weights between 6, 5 and 5, 3 are the 
same. Similarly, if the second path is chosen, the two clusters can be {4, 6, 7}, {1, 2, 3, 
5} or {4, 5, 6, 7}, {1, 2, 3} because the weights between 6, 5 and 5, 3 are the same. If the 
third path is chosen, the two clusters are {4, 6, 7}, {1, 2, 3, 5}. If the fourth path is 
chosen, the two clusters are {4, 6, 7}, {1, 2, 3, 5}. 

5 The ROCK clustering based on the chain P systems 

Boolean or categorical type database consists of transactions. Each transaction consists of 
some items and each item has a number of fixed values. In this section, a clustering 
problem for Boolean or categorical type database is considered: database P = {p1, p2, ꞏꞏꞏ, 
pn} with each transaction has m items is clustered into k clusters. 

Three notions are introduced firstly (Guha et al., 2000). 

 Neighbours: The neighbours of a data point are the data points which are similar to 
it. In this paper, the similarity between two transactions is set as the number of the 
same value items. If the number is larger than or equal to a certain threshold, the two 
transactions are called neighbours. 

 Links: Links(pi, pj) is the number of the common neighbours between transactions pi 
and pj. The larger the Links(pi, pj), the more common neighbours they have. 

 Goodness measure: Goodness measure evaluates the similarity between clusters. link 
[Ci, Cj] defines the number of links between clusters Ci and Cj, i.e.,  ,i jlink C C  
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 
,

, .
q i r j

q r
p C p C

links p p
 

  In this paper, the goodness measure for merging 

clusters Ci and Cj is defined as follow:    ,
, .

i j
i j

i j

link C C
g C C

n n



 This goodness 

measure is equivalent to the average number of links in the two clusters. The pair of 
clusters with the maximum goodness measure is the best pair of clusters to be 
merged. 

The process of the algorithm is as follows: Each transaction is seen as a cluster initially. 
The two clusters with the largest goodness measure are merged iteratively until k clusters 
are left. 

The instance parameters need to enter a chain P system, therefore the database needs 
to be encoded as object p = h1 * a1  h2 * a2  …  hm * am, hi  {0, 1} representing the 
database, where 1 * ai (resp. 0 * ai) represents the ith item is contained (resp. not 
contained) in a transaction; and the number of clusters needs to be encoded as object ξ 
showing the number of clusters needs to be obtained by its number. 

5.1 The chain P system for improving the ROCK clustering 

The formal definition of the chain P system for the ROCK clustering is as follows. 

 , , , , , ,ROCK in outO μ w R ρ i i   

  1 2 1 2 1 2 1 2 3 1 2 1 2, , , , , , , , , , , , 1 , 1i j j i i i i i i i i i i i i iO a ξ t γ δ δ c c d γ γ C i m i n       

 μ = [1]1 

 w = {1 * t1  0 * t2  …  0 * tn  1 * γ1, 0 * t1  1 * t2  …  0 * tn  1 * γ2, …, 
0 * t1  0* t2  …  1 * tn  1 * γn, 0 * cij1  0 * cij2  …  0 * cijn  0 * δij  2 * 
γ, C00} 

 ρ = {ri > rj, i < j} 

 iin = 1 

 iout = 1 

 R. 

Other objects used in ROCK are explained. Object X = f1 * t1  f2 * t2  …  fn * tn  * q 
 γi represents the order number and the total number of the transactions in Ci. Object  
T = h1 * a1  h2 * a2  …  hm * am  d * δij is an auxiliary variable, where hf * af 
represents the total number of the fth item in transactions pi and pj is hf, and d * δij 
represents the similarity between pi and pj is d. Object cij represents pi and pj are 
neighbours. Object S = h1 * cij1  h2 * cij2  …  hn * cijn  d * δij  q * γ is an auxiliary 
variable, where the first n components represent pi and pj contain/do not contain the 
common neighbour: pt, d * δij represents the number of the common neighbours between 
pi and pj is d, and q * γ represents the total number of the considered transactions is q. 
Object D = q * δ'ij  d * γ' represents the number of the common neighbours between Ci 
and Cj is q and the total transactions number in Ci and Cj is d. Object D' = q * δ'ij  d * γ′ 
 h * dij represents the number of the common neighbours between Ci and Cj is q, the 
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total transactions number in Ci and Cj is d, and the goodness is h. Object Cij shows the 
goodness between Ci and Cj is the biggest one. 
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In the initial, 1 * t1  0 * t2  …  0 * tn  1 * γ1, 0 * t1  1 * t2  …  0 * tn  1 * γ2, 
…, 0 * t1  0 * t2  …  1 * tn  1 * γn, 0 * cij  1 * 0  cij * 2  …  0 * cijn  0 * δij 
 2 * γ and C00 are in membrane 1. Objects 1 * t1  0 * t2  …  0 * tn  1 * γ1, 0 * t1  
1 * t2  …  0 * tn  1 * γ2, …, 0 * t1  0 * t2  …  1 * tn  1 * γn show each 
transaction is seen as one cluster in the initial, 0 * cij1  0 * cij2  …  0 * cijn  0 * δij  
2 * γ shows the number of neighbours has not been obtained, and C00 shows the two 
clusters need to be merged have not been obtained. Computation begins when p and ξn–k 
enter membrane 1. 

Neighbours judging stage 

Sub-rule r1.1 generates Tij where the coefficient of af in Tij is the sum of the coefficient of 
af in ti and tj. The fth item is the common item of pi and pj if the coefficient of af is 2.  
Sub-rule r1.3 counts the number of the common items of pi and pj by the coefficient of δij. 
If the number of the common items of pi and pj is less than the previously set threshold, 
Tij is dissolved by r1.4. Otherwise, cij is generated by r1.5 to record that pi and pj are 
neighbours. 

Links counting stage 

If cif and cjf exist at the same time, transaction pf is the common neighbour of pi and pj, 
the coefficient of δij adds 1 to record this by r1.6, i.e., the coefficient of δij shows the 
number of links between pi and pj. 

Maximum goodness finding stage 

Sub-rule r1.7 generates D and D'. In D', the coefficient of dij is the goodness of clusters Ci 
and Cj by r2. The coefficients of all dij are decreased at the same time by r4, and the Cij 
representing the biggest goodness is obtained by r3. 

Clustering merging stage 

Rule r5 merges clusters Ci and Cj. Sub-rule r5.1 obtains the new cluster Ci which contains 
the transactions in previous Ci and Cj. Sub-rule r5.3 obtains the new number of common 
neighbours between the new Ci and other clusters. Sub-rule r5.4 generates the new D' 
which is used to measure the goodness of the new clusters. 

Above process continues until only k clusters are remained. 
 



   

 

   

   
 

   

   

 

   

    A chain membrane model with application in cluster analysis 345    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 The seven clusters obtained by the ROCK algorithm 

Cluster The serial number of data points belonging to the corresponding cluster 

1 1, 4, 9, 14, 18-20, 22, 26, 32, 38, 44, 54, 55, 79, 82, 115, 121, 123, 136, 139, 181, 186, 
206, 222, 229, 232, 244, 252, 262, 270, 272, 281, 300, 312, 316, 328, 331, 358, 381, 
386, 400, 403, 415, 418, 423, 492, 493, 506, 524, 533, 535, 543, 557, 566, 569, 580, 
591, 594, 596, 599, 600, 614, 654, 655, 663, 664, 695, 698, 699, 701, 726, 733, 734, 
738, 749, 777, 786, 789, 795, 796, 799, 803, 813, 814, 815, 836, 838, 842, 860, 907, 
909, 910, 928, 933, 943, 950, 951, 957, 967, 985, 1000 

2 2, 3, 6-8, 10-13, 21, 23-25, 27, 28, 31, 33-35, 40-42, 45-53, 56, 58-60, 62-65, 67-69, 
72, 74, 75, 78, 80, 85, 87-89, 92-94, 96-100, 102-111, 114, 116, 118, 122, 125, 127, 
129-132, 134, 138, 140-142, 144, 145, 148-151, 153, 156-162, 164-170, 172, 174-
180, 184, 185, 187, 189, 190, 193, 195, 197-199, 201-203, 205, 207-212, 215-219, 
221, 223, 225-228, 230, 233, 235, 237-243, 246, 248, 249, 251, 254-256, 258-264, 
268, 269, 271, 273-278, 280, 282, 284-289, 292-297, 302, 304, 305, 307-309, 311, 
313, 315, 318, 321, 323-327, 329, 330, 332-335, 337, 338, 340-343, 345, 348, 352-
355, 357, 359, 360, 364, 365, 367, 369, 371-373, 375, 376, 378-380, 383, 384, 387, 
389-393, 395, 397, 398, 401, 402, 404-411, 413, 414, 416, 419, 421, 422, 424, 425, 
427, 428, 431, 432-434, 436, 438-449, 451-453, 455, 457-464, 466-472, 478, 480-
482, 486, 487, 489, 490, 494-496, 498-505, 512, 517-523, 526-528, 530-532, 534, 
537, 539, 541, 544, 546, 547, 550, 553, 555, 556, 559-561, 565, 567, 570, 571, 573-
576, 578, 579, 581, 582-586, 590, 593, 595, 597, 598, 602, 604-606, 608, 609, 615, 
616, 618, 619, 621, 622, 624, 626, 629, 630, 632, 634-638, 640, 641-645, 647-649, 
651-653, 656, 658, 659, 661, 662, 665-671, 675, 678-680, 682, 684, 686, 688-693, 
696, 697, 703-707, 709, 710, 711, 713-719, 721, 722, 725, 727, 729-731, 735, 736, 
739, 742-748, 751, 752, 754-757, 759-763, 765, 769-773, 776, 778, 779-781, 783-
785, 788, 790-794, 797, 800-802, 804-809, 811, 812, 816-818, 820, 821, 823-826, 
829, 833-835, 837, 839, 840, 843, 845, 847-849, 851, 852, 856, 858, 859, 861-866, 
868, 870-873, 875-880, 883-885, 887-890, 892-901, 905, 911, 913, 916, 917, 923, 
930, 934, 937, 941, 948, 952, 956, 960, 977, 979, 982, 990, 991, 997, 999 

3 5, 15, 17, 57, 66, 81, 84, 86, 95, 101, 124, 126, 128, 146, 147, 152, 191, 204, 250, 
267, 279, 298, 301, 310, 346, 349, 351, 361-363, 370, 382, 388, 396, 412, 420, 429, 
456, 497, 507, 508, 516, 536, 542, 545, 552, 564, 568, 592, 601, 603, 607, 611-613, 
617, 631, 639, 657, 673, 694, 700, 702, 712, 724, 728, 732, 758, 766, 775, 798, 846, 
854, 882, 902-904, 906, 908, 912, 914, 915, 919-922, 925-927, 931, 932, 936, 938, 
939, 942, 944, 946, 947, 949, 953-955, 961, 962, 965, 966, 969-971, 974, 976, 980, 
983, 984, 986, 987-989, 992, 993, 995, 996 

4 16, 29, 37, 43, 61, 70, 83, 90, 91, 112, 117, 120, 143, 154, 163, 171, 182, 183, 188, 
196, 214, 220, 231, 234, 253, 257, 266, 283, 290, 291, 339, 350, 356, 366, 374, 377, 
394, 399, 430, 465, 474, 476, 477, 484, 488, 510, 511, 514, 515, 525, 529, 538, 548, 
551, 577, 587-589, 610, 620, 625, 628, 660, 672, 676, 677, 687, 708, 720, 740, 741, 
764, 768, 782, 787, 822, 831, 844, 853, 855, 867, 869, 929, 935, 994 

5 30, 36, 39, 71, 73, 76, 77, 113, 119, 133, 135, 137, 155, 173, 192, 194, 200, 213, 224, 
236, 245, 247, 265, 299, 303, 314, 317, 319, 320, 322, 344, 347, 368, 417, 426, 435, 
437, 454, 473, 475, 479, 483, 485, 491, 509, 513, 540, 549, 554, 558, 562, 563, 572, 
623, 627, 646, 650, 674, 681, 683, 723, 737, 750, 753, 767, 774, 810, 819, 827, 828, 
830, 832, 841, 850, 857, 881, 886, 924, 959, 998 

6 306 

7 336, 385, 450, 633, 685, 874, 891, 918, 940, 945, 958, 963, 964, 968, 972, 973, 975, 
978, 981 
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5.2 Time complexity analysis 

The time complexity of this algorithm is (1 + 1 + 1 + 1 + 1 + 1 + 1) + (1 + 1 + gmax + (1  
+ 1 + 1 + 1)) * (n – k) = O(gmax * n), while the time complexity of the conventional 
ROCK algorithm is O(n2 + nmmaxma + n2logn) (Guha et al., 2000). Where, gmax is the 
value of the maximum goodness, mmax is the maximum number of the neighbours, and ma 
is the average number of the neighbours. 

The chain P systems solve the ROCK algorithm in linear time. 

5.3 Test and analysis 

Mushroom database of UCI dataset contains 8,124 data points. Each data point contains 
22 properties. All data points are divided into two classes: edible and poisonous. In this 
paper, the first 1,000 data points are used. The 1,000 data points are numbered from 1 to 
1000 following the order. Two data points with 18 or more same property values are seen 
as neighbours. The seven clusters obtained are listed in Table 1. 

As shown in the table, the sizes of the first cluster, the third cluster, the fourth cluster 
and the fifth cluster are almost the same (there sizes are 102, 122, 85 and 80 
respectively). The second cluster is the largest cluster with the size of 591 and the sixth 
cluster is the smallest cluster with the size of 1. There is a big difference between cluster 
sizes. All clusters obtained are pure clusters, i.e., in any cluster, all data points are either 
all poisonous or all edible. The error rate is 0%. 

6 Conclusions 

In this paper, a new chain P system is proposed. The chain membranes, objects and rules 
are presented. Computational power and efficiency are analysed. It is proved that the 
chain P systems are universal, and they can solve the NP problems without the expansion 
of membranes. The graph clustering algorithm and the ROCK algorithm based on  
the chain P system are given as applications. Results show that improvements of 
conventional algorithms by chain P systems are non-trivial. For the future research, it is 
worth investigating other variants of P systems according to the structure and function of 
the biological membrane. It is also worth improving other data mining algorithms by 
using P systems, such as spectral clustering, support vector machines, and genetic 
algorithms, etc. (Han et al., 2012). 
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