
Int. J. Metaheuristics, Vol. 7, No. 3, 2020 197

A Tabu search approach for a virtual networks
splitting strategy across multiple cloud providers

Marieme Diallo*, Alejandro Quintero and
Samuel Pierre
Department of Computing and Software Engineering,
École Polytechnique de Montréal,
C.P. 6079, succ. Centre-Ville,
Montréal, QC,
H3C 3A7, Canada
Email: marieme.diallo@polymtl.ca
Email: alejandro.quintero@polymtl.ca
Email: samuel.pierre@polymtl.ca
*Corresponding author

Abstract: This paper addresses the problem of computational and networking
resources embedding across multiple independent cloud providers (CPs).
We focus on the splitting phase problem by proposing a virtual network
requests (VNRs) splitting strategy, which aims at improving the performance
and the quality of service (QoS) of resulting mapped VNR segments. We
formalise our splitting strategy as a mathematical maximisation problem with
constraints by using an integer linear program (ILP). Since the VNRs splitting
process is classified as an NP-hard problem, we propose a metaheuristic
approach based on the Tabu search (TS), in order to find good feasible
solutions in polynomial solving time. The simulations results obtained show
the efficiency of the proposed algorithm, in comparison with the exact method
and an other baseline approach. Solution costs are on average close to the
upper bounds, with an average gap ranging from 0% to a maximum of 2.97%,
performed in a highly reduced computing time.

Keywords: cloud computing; virtualised network infrastructures; resource
splitting; optimisation; metaheuristics; Tabu search.

Reference to this paper should be made as follows: Diallo, M., Quintero, A.
and Pierre, S. (2020) ‘A Tabu search approach for a virtual networks splitting
strategy across multiple cloud providers’, Int. J. Metaheuristics, Vol. 7, No. 3,
pp.197–238.

Biographical notes: Marieme Diallo received her Bachelor’s in Computer
Engineering from the Université Gaston Berger de Saint-Louis, Senegal, in
2008, and Master’s in Computer Engineering from the École Polytechnique de
Montréal, Canada, in 2014. She has been a member of the Mobile Computing
and Networking Research Laboratory at École Polytechnique de Montréal,
Canada, since May 2010, where she is currently working towards her PhD
in Computer Engineering. Her research interests include cloud computing,
network virtualisation and optimisation.

Copyright © 2020 Inderscience Enterprises Ltd.

198 M. Diallo et al.

Alejandro Quintero received his Engineer’s in Computer Engineering from
the Los Andes, Colombia, in 1983. In June 1989 and in 1993, he received
his diploma of Advanced Studies and Doctorate in Computer Engineering,
respectively, from the INPG Grenoble and Université Joseph Fourier,
Grenoble, France. He is currently a Full Professor at the Department of
Computer Engineering of École Polytechnique de Montréal, Canada. His
main research interests include services and applications related to mobile
computing, network security, networks infrastructures and next generation
mobile networks. He is the co-author of one book, as well as more than 60
other technical publications including journal and proceedings papers.

Samuel Pierre is currently a Professor in the Department of Computer
and Software Engineering at the École Polytechnique de Montréal, and the
Director of the Mobile Computing and Networking Research Laboratory
(LARIM). His research interests include wired and wireless communications,
mobile computing and networking, cloud computing and e-learning. He
received several awards, including the Prix Poly 1873 for excellence in
teaching and training (2001 and 2005), and the Knight of the National Order
of Quebec in 2009. In December 2011, he was appointed as a member of
the Order of Canada. In May 2014, he received his Honorary Doctorate from
the Université du Quebec à Trois-Rivieres (UQTR) and another is from the
Université du Quebec en Outaouais (UQO) in November 2016.

1 Introduction

Cloud computing has recently emerged as an innovative utility computing solution
(Armbrust et al., 2010), allowing small businesses to rent distributed configurable
resources as an on-demand service model. Nowadays, the Infrastructure as a Service
(IaaS) has become the most widely adopted cloud service model (Manvi and Shyam,
2014). In this paradigm, a service provider (SP) can lease a large pool of virtualised
infrastructure layer resources (computational and networking) from one or more cloud
providers (CPs), in order to build heterogeneous virtual networks that will offer
customised services to its end clients.

In the IaaS business model, a fundamental management problem lies in the efficient
embedding of co-existing virtual network requests (VNRs) onto distributed substrate
infrastructures (Belbekkouche et al., 2012; Manvi and Shyam, 2014). This issue, usually
referred to as the well-known NP-hard virtual network embedding (VNE) problem
(Chowdhury et al., 2012; Fischer et al., 2013; Zhang et al., 2016), becomes more
challenging when the substrate infrastructures are owned by multiple independent CPs
(Grozev and Buyya, 2012; Rafael et al., 2012). Indeed, in such a context, the VNE
process requires two major phases of operation, each of them dealing with an NP-Hard
problem with different technical approaches to resolve it: the multi-cloud VNRs splitting
phase, followed by the intra-cloud VNR segments mapping phase. In the first phase,
which is similar to a graph partitioning problem (Sanchis, 1989; Tao et al., 1992), a
virtual network provider (VNP), acting as a virtual brokerage service on behalf of the SP
(Fischer et al., 2013), generally uses a strategy to select eligible CPs based on the SPs
requirements, and split the VNRs into different segments. In the second phase, which

A Tabu search approach 199

corresponds to the VNE problem within a single CP (Chowdhury et al., 2012; Khan
et al., 2016; Zhang et al., 2014), each selected CP uses a mapping approach to embed
the assigned VNR segments into its intra-cloud network.

VNE over a multi-cloud network has been only recently addressed in the literature
(Dietrich et al., 2015; Leivadeas et al., 2013; Mano et al., 2016; Mechtri et al., 2015).
It adds more complexity and scalability issues. Indeed, due to the non-interoperability
between CPs, it becomes difficult to have optimal configurations from the global view
of the multi-cloud embedding process. Moreover, the VNP visibility on the multi-
cloud substrate network is essentially decisive for the efficiency of any VNRs splitting
strategy. However, the VNP proceeds with the splitting phase based on a very poor
knowledge of the multi-cloud environment. Information such as substrate network
topologies and details about the resources availabilities are usually concealed by the CPs
(Dietrich et al., 2015; Mano et al., 2016). The VNP is then restricted to CP policies,
while generating embedding solutions which must best satisfy the SPs requirements. On
the other hand, the few early heuristics-based solutions on the multi-cloud VNE problem
have generally assumed that CPs would disclose some private information (Leivadeas
et al., 2013; Samuel et al., 2013). Some others aim only at minimising the resource
provisioning price for the SP during the splitting phase (Dietrich et al., 2015; Mano
et al., 2016), regardless of the performance and quality of service (QoS) of resulting
embedded VNR segments.

In this paper, we propose a QoS-based splitting strategy for a VNRs embedding
across multiple IaaS providers. Our approach considers resource and QoS constraints
based on SPs requirements, with the purpose of splitting efficiently the VNRs and
improving the performance of resulting VNR segments that are mapped onto the
selected intra-cloud infrastructures. The key contributions of this work are as follows:

• We have designed a multi-cloud VNRs splitting approach based on the limited
information disclosed by the CPs and the dynamic and heterogeneous nature of
the substrate network. In addition, for a better efficiency of our splitting strategy,
we have enriched the visibility of the VNP on the multi-cloud environment, by
taking advantage of certain information related to network topologies that is not
treated as confidential, such as CPs point-of-presence (PoP) (Dietrich et al., 2015).

• We use an integer linear programming (ILP) model to formalise the proposed
strategy as a maximisation problem with constraints. Resource provisioning costs
are defined based on the availability of supplied resources and the performance
guarantees advertised by the CPs.

• Taking into account the NP-hard nature of the VNRs splitting phase problem, we
propose a Tabu search (TS) algorithm (Glover, 1989, 1990), in order to solve
large instances of the problem in polynomial computing time.

• To handle the VNR segments mapping phase, we have adopted a multi-objective
intra-cloud mapping approach for each selected CP, in order to minimise mainly
the overall delay. The adopted approach follows the work of Larumbe and Sanso
(2013), which formalises the mapping problem as a mixed-integer linear
programming (MILP).

The rest of the paper is organised as follows: Section 2 discusses relevant related
work. Section 3 describes the multi-cloud VNE problem and the proposed embedding

200 M. Diallo et al.

framework. Section 4 presents the mathematical formulation related to the VNRs
splitting problem. Section 5 presents the adaptation of the proposed algorithm.
Performance evaluation and simulation results are presented in Section 6. Finally,
conclusion and future works are highlighted in Section 7.

2 Related work

VNE represents the main resource allocation challenge in cloud infrastructures
virtualisation (Belbekkouche et al., 2012; Manvi and Shyam, 2014). It is known to be an
NP-hard problem (Chowdhury et al., 2012; Zhang et al., 2016). The problem consists on
a simultaneous and optimised mapping with constraints of virtual nodes resources and
virtual links (VLs) resources onto the substrate networks, which is generally reduced
to the NP-hard multiway separator problem (Fischer et al., 2013). As a result, various
heuristic-based algorithms have been proposed, in order to satisfy economic benefits,
resource utilisation-efficiency, energy-efficiency, survivability and QoS aspects. Indeed,
exact approaches are not scalable and can generally only be applicable in small sized
scenarios (Dietrich et al., 2015; Houidi et al., 2011, 2015; Mechtri et al., 2015).

Here we discuss related work on VNE over a single-cloud network and VNE over
a multi-cloud network.

2.1 VNE over a single-cloud network

Many algorithms, mostly based on (meta) heuristic approaches, have been proposed for
the single-domain VNE optimisation problem. Some works tend to solve the problem by
providing a certain coordination between the node mapping stage and the link mapping
stage (Chowdhury et al., 2012). Hesselbach et al. (2016) recently proposed a new path
algebra-based embedding strategy that coordinates in a single step the mapping of nodes
and links.

Dynamic methods, which support remappings of resources during the life-time
of requests, have also been suggested. Ayoubi et al. (2015) proposed a Tabu-based
framework for reliable VNE with migration, which consists of availability-aware
resource allocation and reconfiguration. Rahman and Boutaba (2013) proposed a fast
re-embeddings strategy based on a hybrid policy heuristic that aims at network
survivability. Zhang et al. (2014) took a step further by introducing a first-fit-based
approach to support opportunistic resource sharing among virtual nodes and VLs.
Because most of these approaches may suffer from improper load balancing and link
under-utilisation, Khan et al. (2016) proposed a proactive and reactive multi-path link
embedding approach to achieve the VNE survivability, while minimising both resource
redundancy and path splitting overhead.

Other works introduce multi-objective approaches to resolve the problem. Larumbe
and Sanso (2012, 2013) proposed an efficient multi-objective model for mapping virtual
resources into various locations of cloud data centres. Their solution is based on a
TS approach that allows CPs to minimise delay, environmental and resource operating
costs. In the same way, Melo et al. (2013) proposed an ILP model to solve the online
VNE problem in order to minimise the resource consumption, while performing load
balancing. Their work was extended in Melo et al. (2015), by considering in addition

A Tabu search approach 201

the minimisation of energy consumption. Houidi et al. (2015) also proposed a multi-
objective fault-tolerant VNE algorithm formalised as a MILP, which takes into account
constraints related to power consumption, resource availability and load balancing.

These intra-domain VNE solutions, although they may be optimal, can not be
properly applicable to a multi-domain VNE problem. They are performed by the CP
based on a complete knowledge of its substrate network topologies and available
resource distributions. As a result, upon splitting the VNRs, they can only be used by
each selected CP for the VNR segments intra-cloud mapping phase.

2.2 VNE over a multi-cloud network

VNE over a multi-domain has not been intensively studied. Research works have
essentially focused on the VNRs splitting phase, since existing solutions related to the
single-domain VNE problem are usually adopted for the mapping phase.

Houidi et al. (2011) were one of the first authors working in this research field. They
combined an exact ILP method with a heuristic algorithm based on recursive max-flow
min-cut to find the optimal VNRs splitting across multiple CPs. Samuel et al. (2013)
introduced a distributed protocol for VNE problem in multiple substrate networks.
Their approach aims at coordinating the participating CPs through competitive pricing
mechanisms, in order to maximise their revenue. The proposal of Leivadeas et al. (2013)
is one of the few performance and efficiency-based approaches for VNRs splitting.
The authors proposed an hierarchical framework where the VNRs splitting problem is
solved through an iterated local search (ILS) algorithm. However, even though costs are
not randomly generated as with Houidi et al. (2011), their approach does not respect
certain information concealed by the CPs (Dietrich et al., 2015). Also, their resource
provisioning costs definition lacks on the heterogeneous nature of the substrate network.
Mechtri et al. (2015) proposed a heuristic algorithm based on graph decomposition into
topology patterns and bipartite graph matching, in order to solve the resources mapping
problem in distributed and hybrid cloud environments.

On the other hand, some works have considered the limited level of access to
information of the VNP before proceeding to the splitting phase. Dietrich et al.
(2015) have studied the suboptimality of multi-domain VNE with limited information
disclosure, whose the efficiency is compared with the ‘best-case’ scenario where the
complete network topology and resource availability information is accessible by the
VNP. Mano et al. (2016) proposed also a novel optimisation method restricted to CPs
private information, which uses a secure multi-party computation (MPC) to generate
minimal operations that minimise inter-domain VNE prices. However, both proposals
are only focus on VNRs splitting at the lowest price for the SP, without considering
performance and QoS of embedded VNR segments.

Based on the literature, most VNRs splitting strategies across multiple CPs are only
based on exact methods, and thus can only scale up to topologies with small sizes
(Dietrich et al., 2015). Some others based on heuristics and using a more sophisticated
splitting scheme (Leivadeas et al., 2013; Samuel et al., 2013) assume that CPs would
share some private information with the VNP. Not to mention that most proposals, even
though they are restricted to the domain-privacy of CPs (Dietrich et al., 2015; Gong
et al., 2016; Li et al., 2016; Mano et al., 2016), tend only to minimise the resource
provisioning price for the SP. This may not give opportunities to the SP to select CPs
based only on desired performance and QoS.

202 M. Diallo et al.

3 Multi-cloud VNE problem

In this section, we first briefly describe the problem of VNE across multiple CPs. Then,
we present an overview of the proposed framework, where an hierarchical approach is
generally adopted to decompose the global problem into the VNRs splitting phase and
the VNR segments mapping phase.

Figure 1 Multi-cloud VNE process

3.1 Problem description

The global multi-cloud VNE process is described in Figure 1. The problem consists
in efficiently embedding VNRs onto multiple cloud networks owned by independent
CPs. VNRs are submitted in a high level of abstraction by the SP, as a set of virtual
nodes interconnected by VLs representing the exchanged traffic between virtual nodes
(Fischer et al., 2013). Virtual nodes and VLs are specified with constraints related to
required resources and QoS criteria (e.g., processing, memory, storage, bandwidth, QoS
parameters, geographic footprint, etc.), that the embedding process has to satisfy. The
SP will generally rely on the VNP, which acts as a broker to discover and select a set of
advertised resources, assembled from multiple CPs and stored in a discovery framework
(Lv et al., 2010). Heterogenous resources are then allocated to host virtual nodes (e.g.,
VMs) in specific substrate nodes (e.g., data centres), and to route VLs onto substrate
paths. In most cases, to meet the SPs requirements, the VNP will need to optimally
split the VNRs among eligible CPs. The resulting VNR segments are then mapped by

A Tabu search approach 203

each selected CP, and are subsequently interconnected via appropriate inter-cloud links
(Leivadeas et al., 2013).

3.2 Multi-cloud VNE framework

Here, an analysis of the resource discovery framework is presented, followed by a
summary description of the approaches proposed to solve each of the splitting and
mapping phases.

3.2.1 Resource discovery framework and assumptions

The VNP visibility on the multi-cloud substrate network is essentially decisive at the
splitting phase. An effective splitting strategy should conduct a thorough investigation
into the discovery of resource information, in order to avoid inefficient embedding
solutions.

A CP typically classifies its substrate nodes into different categories (e.g., Amazon,
2017), each of them having common set of functional attributes and associated with
a set of computational resource types (Leivadeas et al., 2013). Node functional
attributes define characteristics and properties related to the node type, operating system,
virtualisation environment, geographic footprint, QoS parameters, etc. Computational
resource types can be the CPU, disk space, memory, etc., each of them associated with a
certain capacity that the CP keeps dynamically updated (Houidi et al., 2011). Similarly,
substrate links are also classified into different types (e.g., VLAN, L3/L2 VNP, etc.)
and are associated with a bandwidth capacity dynamically updated too. However, as
previously mentioned, detailed information such as substrate network topologies, router-
level connectivity, transit network topologies, number of data centres located in a
cloud and their interconnectivity, number of instances of available resources and their
utilisation, are not disclosed to the VNP. Nevertheless, some information about transit
networks (PoPs) of CPs can be accessible in a high level of abstraction (Dietrich et al.,
2015; Doverspike et al., 2010), allowing the VNP to expand its limited view on the
substrate multi-cloud network. Those information can include an oversimplified view
of PoP networks, traffic statistics and some performance guarantees for a link such as
delay bounds (Larumbe and Sanso, 2013; Lv et al., 2010). A CP can also supply the
maximum or the minimum capacity of a resource it can offer or guarantee (Chaisiri
et al., 2012), without revealing details about the distribution and utilisation of these
resources inside its intra-cloud network.

Based on these observations, in our framework the following information are
considered accessible by the VNP:

1 the maximum available capacity of each computational resource type a CP can
offer for each category of node

2 the minimum available bandwidth capacity a CP can guarantee in its intra-domain
for each type of link

3 the estimated delay bound on an inter-cloud link and for transiting through a PoP
network.

204 M. Diallo et al.

Without loss of generality, we consider that virtual nodes are virtual machines (VMs)
packaged by the SP. A PoP network is also represented in a high level of abstraction as
a macro node associated with a transiting delay bound. For sake of simplicity, we only
consider one PoP network per CP. CPs are interconnected in a half mesh connectivity
and we did not consider in this work the path splitting scenario, as the VNP does not
know the residual bandwidth capacity of inter-cloud paths. Note that CPs may also
advertise the unit monetary cost of resources they offer in the discovery framework.
But, in this present work, the expenditure minimisation for the SP is not our interest.
We only focus on an efficient VNE that targets the performance and the QoS of split
VNRs.

Figure 2 VNRs splitting phase based on the resource discovery framework

3.2.2 Multi-cloud VNRs splitting phase

The multi-cloud VNRs splitting phase is illustrated in Figure 2. Upon receiving an
incoming VNR, the VNP relies on the above disclosed information to identify eligible
substrate resources able to fulfill the SPs requirements. To simplify this matching step,
we assume that VMs and VLs are classified and specified with characteristics at the
same level as substrate nodes and substrate links respectively. Furthermore, we consider
that VLs are associated with a maximum communicating delay, in order to allow the
QoS fulfilment for delay-sensitive applications. Resources required by a VNR may
be supplied by more than one CP, at different provisioning costs. In our framework,
the VNP will perform a VNRs splitting strategy, by using a TS-based approach to
evaluate the most cost-effective resource provisioning depending on their availability,
while considering QoS restrictions specified in the request. Thereafter, the VNP sends

A Tabu search approach 205

the resulting VNR segments to the selected CPs so they can proceed to the intra-cloud
mapping phase.

TS metaheuristic is adopted in this framework mainly due its efficiency in achieving
optimal or near-optimal solutions for various optimisation problems that deal with
scalability issues.

3.2.3 Intra-cloud VNR segments mapping phase

Each CP receiving a particular VNR segment maps it onto its infrastructure by using
an appropriate intra-cloud mapping method. In our framework, we adopt a multi-criteria
solution based on the principles stated by Larumbe and Sanso (2012, 2013). In this
approach, a selected CP must map in the best case all the assigned request segments, by
using a multi-objective MILP model. The latter aims to minimise the total embedding
cost (including resource, traffic and environmental costs), while providing the best
possible QoS by reducing mainly the overall traffic routing delay. However, we have
re-stated the approach in order to remain consistent with the level of granularity we
have considered in this work, which is limited to data centres and not to physical servers
hosted into the data centres.

4 System modelling and mathematical formulation

In this section, the notation used to describe the multi-cloud VNRs splitting problem is
presented, followed by the mathematical formulation related to the proposed strategy.
The modelling, notation and formulation related to the intra-cloud VNR segments
mapping problem are available in Appendix.

4.1 Notation

The notation is composed of sets, parameters and variables describing the multi-cloud
substrate network, the VNR, the costs definition and the decision variables:

• Global sets: Let A designate the set of node categories, R the set of
computational resource types and T the set of link types.

• Multi-cloud substrate network: The substrate network is modeled as a weighted
undirected graph GS = (NS , LS), where NS is the set of substrate nodes and LS

the set of substrate links (inter-cloud links). Let I designate the set of CPs and Θ
the set of all PoP nodes (transit networks). Note that NS includes I and Θ, and
PoP nodes are only used to access the network of a CP or to transit through it.
The maximum available capacity of resource r ∈ R that CP i can offer for nodes
of category a ∈ A is denoted by Qrai (Qrai ∈ N). The minimum available
bandwidth capacity that CP i can guarantee in its intra-cloud network for links of
type t ∈ T is denoted by Bti (Bti ∈ N). The average delay bound of inter-cloud
link e ∈ LS and for transiting through PoP network p ∈ Θ are respectively
denoted by de and dp. Let Pij designate the set of all paths between CP i and CP
j. We denoted by Oφ the set of all PoP transit networks in Θ spanned by path
φ ∈ Pij .

206 M. Diallo et al.

• VNR modelling: The VNR is also modeled as a weighted undirected graph GV =
(NV , LV), where NV is the set of VMs and LV the set of VLs representing the
inter-VMs traffic. Let NV

a denote the set of VMs defined in category of node
a ∈ A (

∪
a∈A

NV
a = NV). The required amount of resource r ∈ R by VM v is

denoted by qrv (qrv ∈ N1). Let qmin
r and qmax

r designate respectively the lowest
and the highest amount of resource r ∈ R ever requested in a VNR. Let LV

t

denote the set of VLs of type t ∈ T (
∪
t∈T

LV
t = LV). The bandwidth demand and

the maximum allowed traffic delay of VL l are respectively denoted by
bl(bl ∈ N1) and δl. This maximum delay adds constraints on the assignment of
communicating VMs, in order to avoid delay violations on VLs.

• Cost parameters: We denote by CN
rai the node provisioning cost of CP i for nodes

of category a ∈ A for resource of type r ∈ R. Let CL
ti designate the intra-cloud

link provisioning cost of CP i for links of type t ∈ T , and CL
tφ the inter-cloud link

provisioning cost of path φ ∈ Pij , i, j ∈ I , for links of type t ∈ T .

• Other parameters: We defined other parameters whose equations are stated in
Subsection 4.2.1. Let Qmax

ra denote the highest available capacity of resource
r ∈ R supplied among all CPs for nodes of category a ∈ A. Let Bmax

t denote the
highest available bandwidth capacity guaranteed among all CPs for links of type
t ∈ T . Let wrv designate the weight of resource r ∈ R required by VM v. Let α
and β denote respectively the node demand weight and the link demand weight in
the total VNRs splitting cost.

• Decision variables: Let Xvi denote the binary variable set to 1 if VM v is
assigned to CP i and 0 otherwise. Let Ylφ denote the binary variable set to 1 if
VL l is assigned to path φ ∈ Pij , i, j ∈ I, t ∈ T , and 0 otherwise.

4.2 VNRs splitting problem formulation

Our splitting strategy aims to design a VNE method with the best performance of
resulting VNR segments, while satisfying resources and QoS requirements. To this end,
we define the intra-cloud resource provisioning cost based on the availability of supplied
resources. The provisioning cost of an inter-cloud path is stated as a function of the
intra-cloud link provisioning cost of the two corresponding endpoints CPs, and the
number of PoP transit networks the path spans.

4.2.1 Multi-cloud resource provisioning costs definition

We first define by equation (1) the parameter Qmax
ra . The node provisioning cost per CP

is then given by equation (2), as the maximum available capacity of each resource the
CP can offer for each category of nodes, normalised into the range [0 1] by dividing it
by Qmax

ra (or by the value 1 to avoid division by zero):

Qmax
ra = max

i∈I
(Qrai) , ∀ r ∈ R, a ∈ A (1)

CN
rai =

Qrai

max (Qmax
ra , 1)

, ∀ r ∈ R, a ∈ A, i ∈ I (2)

A Tabu search approach 207

The parameter wrv is given by the following, where the values of qmax
r and qmax

r are
estimated and kept updated by the VNP based on previous statistics:

wrv =
qrv − qmin

r

qmax
r − qmin

r

, ∀ r ∈ R, v ∈ NV , qmin
r , qmax

r ∈ N1

qmin
r ≤ qrv ≤ qmax

r

(3)

The parameter Bmax
t is defined by equation (4). The intra-cloud link provisioning cost

per CP is then given by equation (5), as the minimum available bandwidth capacity the
CP can guarantee for each link type, normalised into the range [0 1] by dividing it by
Bmax

t (or by the value 1 to avoid division by zero):

Bmax
t = max

i∈I
(Bti) , ∀ t ∈ T (4)

CL
ti =

Bti

max(Bmax
t , 1)

, ∀ t ∈ T, i ∈ I (5)

The inter-cloud link provisioning cost of each path between a pair of CPs is given
by equation (6), as the minimum intra-cloud link provisioning cost between the two
endpoint CPs of the path, divided by the number of PoP transit networks spanned:

CL
tφ =

min
(
CL

ti , C
L
tj

)
max (|Oφ| , 1)

, ∀ t ∈ T, i, j ∈ I, φ ∈ Pij .

with ∀φ ∈ Pii, i ∈ I, Oφ = ∅
(6)

Note that if the two endpoints of a path represent the same CP (i.e. i is equal to j),
equation (6) will be equivalent to the corresponding CPs intra-cloud link provisioning
cost stated in equation (5). Since our objective function is a cost maximisation, equation
(6) will guide a solution to prefer the intra-cloud paths, otherwise the inter-cloud paths
spanning the least possible PoP transit networks.

Since the number of VLs is usually much higher than the number of interconnected
VMs, we need to balance the node cost and the link cost in our objective function. To
this end, we define the parameters α and β as follows:

α =

∣∣LV
∣∣

|NV |+ |LV |
, β = 1− α (7)

4.2.2 ILP formulation

The objective function of the proposed ILP model is expressed as follows:

MAX

α
∑
i∈I

∑
r∈R

∑
a∈A

∑
v∈NV

a

wrvC
N
raiXvi +β

∑
i∈I

∑
j∈I

∑
φ∈Pij

∑
t∈T

∑
l∈LV

t

CL
tφYlφ, (8)

The first term of the objective function represents the total node provisioning cost for
assigning VMs to CPs. The second term represents the total link provisioning cost for

208 M. Diallo et al.

assigning VLs to intra-cloud paths (i.e., where i is equal to j) or inter-cloud paths (i.e.,
where i is different from j). Note that the objective function is maximised since the
evaluated cost represents a benefit for the SP.

The model is subjected to the following constraints:∑
i∈I

Xvi = 1, ∀ v ∈ NV
a , a ∈ A (9)

Constraint (9) ensures that each VM must be assigned to exactly one CP.

Ylφ ≤ Xui +Xvj

2
, ∀ l = uv ∈ LV

t , t ∈ T , u, v ∈ NV
a (v ̸= u), a ∈ A,

φ ∈ Pij , i, j ∈ I
(10)

Constraint (10) states the binary value of the variable Ylφ for each VL between two
communicating VMs.∑

i∈I

∑
j∈I

∑
φ∈Pij

Ylφ = 1, ∀ l ∈ LV
t , t ∈ T (11)

Constraint (11) ensures that each VL must be assigned to exactly one intra-cloud path,
otherwise to an unique inter-cloud path.∑

v∈NV
a

qrvXvi ≤ Qrai, ∀ r ∈ R, a ∈ A, i ∈ I (12)

Constraint (12) ensures that the total amount of a resource required by all VMs assigned
to a CP, must not exceed the maximum available capacity of the resource offered.∑

i∈I

∑
j∈I

∑
φ∈Pij

dφYlφ ≤ δl, ∀ l ∈ LV
t , t ∈ T (13)

where

dφ =
∑
e∈φ

de +
∑

p∈Oφ

dp, ∀ φ ∈ Pij , i, j ∈ I (14)

Constraint (13) ensures that the total delay on a path to which a VL is assigned must
be less than the maximum delay allowed for the VL.

Xvi ∈ {0, 1} ∀ v ∈ NV
a , a ∈ A, i ∈ I (15)

Ylφ ∈ {0, 1} ∀ l ∈ LV
t , t ∈ T , φ ∈ Pij , i, j ∈ I (16)

Constraints (15) and (16) express the binary domain of each variable.

5 The proposed TS splitting algorithm

In this section, we present the basic principles of the TS algorithm, followed by the
proposed adaptation of the metaheuristic, named TS Split, in order to efficiently solve
the VNRs splitting problem for large sized instances.

A Tabu search approach 209

5.1 Basic principles of TS

The TS algorithm uses a local search (LS) method which explores the solution space
by moving iteratively from a solution S to the best solution in the neighbourhood of S.
Contrary to classical descent methods, to overcome local optima and cycling problems,
the TS method allows moves that deteriorate the actual best solution and stores
temporarily forbidden moves in a Tabu list. However, a Tabu move can occasionally be
allowed if it satisfies a specific aspiration criterion. The search stops whenever a given
stop criterion is satisfied. The TS method can also be enhanced by using the adaptive
memory mechanisms.

Figure 3 The proposed TS algorithm

5.2 TS Split algorithm

The proposed algorithm is presented in Figure 3. It combines a LS process and a long-
term memory mechanism. TS Split starts with an initial solution initSol. Then, at each
iteration, the LS process tries to improve the best solution bestSol, by only accepting

210 M. Diallo et al.

current improving solutions currentSol. If bestSol has not been improved after Nmax

iterations, the long-term memory mechanism is then performed. The latter generates a
new initial solution newInitSol, from which the LS process restarts the search in order
to find a better solution. TS Split algorithm stops after Dmax runs of the diversification
mechanism. The parameters of the algorithm are defined in Subsection 6.2 as results of
parameterisation tests. The solution space, the initial solution, the LS process, as well
as the long-term memory mechanism are detailed in the following.

5.2.1 Solution space

A solution S of TS Split is an assignment of each VM of a VNR to a unique CP, and
the assignment of each VL to a unique intra-cloud or inter-cloud path. Thus, a solution
is determined by the setting of variables Xvi and Ylφ that satisfies the constraints of
the problem, particularly the ones stated in equation (12) and equation (13). To avoid
unfeasible solutions, two negative penalty costs PN (S) and PL(S), related respectively
to the possible violation of constraints (12) and (13), are added to the objective function.
Thereby, the cost of a solution S is defined by the evaluation cost E(S), which includes
the intrinsic cost C(S) related to the objective function in equation (8), plus the penalty
costs PN (S) and PL(S). At each iteration, the LS process accepts better solutions S
that improves E(S).

5.2.2 Initial solution

In order to generate the initial solution initSol, three methods were tested:

1 the highest node provisioning cost method, where VMs are sorted in descending
order of their average weight of all requested resources and then assigned to the
first suitable CP that has the highest node provisioning cost

2 the single-CP assignment method, where all VMs are assigned to a randomly
selected CP

3 the random generating of initial solution, where each VM is randomly assigned to
a CP and each VL is assigned to the shortest path between the corresponding pair
of CPs.

Note that any of these methods can guaranty a feasible initSol simultaneously for VMs
and VLs. Best solutions were noticed with the third method. Therefore, a totally random
initial solution were considered in our algorithm.

5.2.3 LS process

Each iteration of the LS process consists of moving from a current solution currentSol
to its best neighbour solution, by choosing the best move to apply to the current solution.
In the following, we describe our best move algorithm, which defines the best neighbour
bestNeighbourSol of currentSol, and how the list of temporarily Tabu (forbidden)
moves TabuList is updated after selecting the best move.

A Tabu search approach 211

Best move algorithm

Two different types of moves were examined in this work:

• M1(v, i, j) which moves VM v from its actual assigned CP i to a different CP j

• M2(v1, v2), which swaps VM v1 and VM v2, respectively assigned to different
CPs

The swapping move M2(v1, v2) was computationally more expensive than the simple
move M1(v, i, j). With the established parameters of our algorithm, the simple move
was globally as efficient as the swapping move in finding near-optimal solutions with
a much shorter calculation time. For this reason, only the simple move was applied in
our algorithm.

Figure 4 The best move algorithm

The best move algorithm is presented in Figure 4. It explores the entire neighbourhood
of currentSol while there is still available moves. The move M1(v, i, j) that generates
the highest evaluation cost E(bestNeighbourSol), depending on its Tabu status and the
aspiration criterion, is chosen. The aspiration criterion allows a Tabu move if only the
latter improves bestSol. Also, instead of selecting the first (or the last) best move after

212 M. Diallo et al.

evaluating all the available moves, our algorithm considers all the moves that generate
the same highest E(bestNeighbourSol) and randomly selects one of them.

Furthermore, instead of evaluating the entire objective function and the penalty costs
for each neighbour solution, only the evaluation cost difference ∆M1(v,i,j) generated
by the move from the current solution to its neighbour solution is calculated. This
approach is more complicated to implement but it decreases significantly the computing
time, by reducing the complexity order of cost calculation from O(n2) to O(n), with n
representing the number of VMs in a request.

Let neighbourSol denote a neighbour solution of currentSol after applying a move
M1(v, i, j) on currentSol. The gain ∆M1(v,i,j) , with v ∈ NV

a , a ∈ A, i, j ∈ I, j ̸= i,
is defined as follows:

∆M1(v,i,j) = α
(
∆N

M1(v,i,j)
+∆PN

M1(v,i,j)

)
+ β

(
∆L

M1(v,i,j)
+∆PL

M1(v,i,j)

)
(17)

∆N
M1(v,i,j)

represents the intrinsic node cost difference from currentSol to
neighbourSol, given by:

∆N
M1(v,i,j)

=
∑
r∈R

wrv

(
CN

raj − CN
rai

)
(18)

∆PN

M1(v,i,j)
represents the node penalty cost difference from currentSol to

neighbourSol, given by:

∆PN

M1(v,i,j)
= −105 ×

∑
r∈R

max

0,
∑

w ∈ NV
a

w ̸= v

(qrwXwj) + qrv −Qraj

+max

0,
∑

w ∈ NV
a

w ̸= v

(qrwXwi)− qrv −Qrai

(19)

∆L
M1(v,i,j)

represents the intrinsic link cost difference from currentSol to
neighbourSol, given by:

∆L
M1(v,i,j)

=
∑

l = vw ∈ LV
t

w ∈ NV

w ̸= v

(
CL

tφ1
− CL

tφ2

)

+
∑

l = wv ∈ LV
t

w ∈ NV

w ̸= v

(
CL

tφ3
− CL

tφ4

)
, (20)

A Tabu search approach 213

where φ1 , φ2 , φ3 and φ3 are respectively defined as follows:

φ1 =
{
φ ∈ Pjkw | Y +

lφ = 1, ∀l = vw ∈ LV
t , w ∈ NV , w ̸= v

}
φ2 =

{
φ ∈ Pikw | Y −lφ = 1, ∀l = vw ∈ LV

t , w ∈ NV , w ̸= v
}

φ3 =
{
φ ∈ Pkwj | Y +

lφ = 1, ∀l = wv ∈ LV
t , w ∈ NV , w ̸= v

}
φ4 =

{
φ ∈ Pkwi | Y −lφ = 1, ∀l = wv ∈ LV

t , w ∈ NV , w ̸= v
}

Y +
lφ and Y −lφ represent respectively the new and the old assignment of VL l on the given

path φ. kw represents the CP to which VM w is assigned, i.e.:
kw =

{
i ∈ I | Xwi = 1, ∀ w ∈ NV

}
∆PL

M1(v,i,j)
represents the link penalty cost difference from currentSol to

neighbourSol, given by:

∆PL

M1(v,i,j)
= −105 ×

(∣∣HL
neighbourSol

∣∣− ∣∣HL
currentSol

∣∣) , (21)

where HL
currentSol and HL

neighbourSol represent the set of VLs whose the resulting
assignment, respectively in the current solution and the neighbour solution, does not
respect the constraint (13). Note that at each movement, each VL is computed to be
assigned to the shortest path (in terms of PoP networks spanned) between a chosen pair
of CPs that does not violate its maximum delay.

Tabu list

To avoid repeated solutions that keep returning to a local optimum, once the best move
M1(v, i, j) is applied, the Tabu list is updated by adding the pair (v, i) to TabuList,
which forbids the heuristic to assign VM v to CP i for STL iterations. Details related to
the formula we use to define the length STL of the Tabu list are given in Subsection 6.2.

5.2.4 Long-term memory mechanism

The diversification mechanism aims at generating new solutions from so far unexplored
regions. To this end, after each iteration of the LS process, the resulting solution is
kept in a statistics memory table, which stores the number of times each VM has
been assigned to a CP. Then, based on the least explored assignment criterion, the
diversification mechanism creates a new initial solution newInitSol from which a new
exploration restarts. An intensification method around the neighbourhood of the best
solution has also been tested in this work, but the diversification mechanism has given
us far better solutions for such an optimisation problem.

6 Numerical results

In this section, the efficiency of the proposed TS-based VNRs splitting strategy is
evaluated through simulations. To this end, two main series of experiments with

214 M. Diallo et al.

different scenarios considered in each of them are conducted: experiment 1, where
the performance of TS Split algorithm is evaluated in terms of quality of solutions
obtained and computing time; and experiment 2, where the performance of the proposed
VNRs splitting strategy is evaluated according to several performance metrics, such as
acceptance rate, execution time, splitting rate and delay.

The proposed approach is implemented in C++ under Visual Studio 14. All
simulations are run on a single server with an Intel Core i7 CPU at 4 GHz and 32 GB
of RAM.

Table 1 Experiments parameters

Value/distribution interval

Substrate network

Number of nodes per CP 25
Number of links per CP 50 on average
Degree of nodes interconnectivity per CP [3, 6]
Intra-cloud link delay bound [0, 3] ms
Inter-cloud link / PoP transit delay bound [0, 25] ms

Small sized VNRs Large sized VNRs

Data centre CPU capacity per node [100, 500] cores [250, 750] cores
category
Data centre memory capacity per node [1,000, 5,000] GB [2,500, 7,500] GB
category
Data centre disk capacity per node [10,000, 50,000] GB [25,000, 75,000] GB
category
Intra-cloud link bandwidth capacity per [4,000, 5,000] Mbps [6,000, 8,000] Mbps
link type

Virtual network request

VNR average arrival rate 1 per 100 time units
VNR lifetime [1,000 100,000] time units
VL maximum delay allowed [0, 300] ms

With 5 CPs With 10 CPs

VM CPU demand [1, 20] cores [1, 40] cores
VM memory demand [1, 200] GB [1, 400] GB
VM disk demand [1, 2,000] GB [1, 4,000] GB
VL bandwidth demand [1, 20] Mbps [1, 20] Mbps

6.1 Experiments setup

Each of experiment 1 and experiment 2 is conducted considering both the strategy with
5 CPs and 10 CPs. We have also stated two scenarios in each experiment, respectively
for small sized instances and large sized instances.

A Tabu search approach 215

• Experiment 1: Here we first consider a scenario 1 which compares the proposed
TS Split algorithm with the exact method. The latter, named Exact Split, is used
to calculate the optimal solution of the proposed ILP and is implemented in
AMPL 64 bits with the CPLEX 12.6.3 solver. In scenario 1, we consider 14
instances of small sized VNRs, in which the number of VMs increases with an
incremental 5-step, respectively from 5 to 70. TS Split algorithm is executed 10
times for each instance. Then, the proposed algorithm is evaluated for large sized
VNRs in a scenario 2, by also running 10 times TS Split for 18 instances of
VNRs, in which the number of VMs increases with an incremental 25-step,
respectively from 75 to 500. In this first experiment, we compare results obtained
by also studying different cases where the diversification mechanism and the
aspiration criterion are not performed in the proposed algorithm.

• Experiment 2: Here we evaluate the efficiency of our VNRs strategy according to
the performance metrics listed above. To this end, we implement in C++ the
splitting approach proposed by Leivadeas et al. (2013), which we name ILS Split.
Our algorithm is performed there with the aspiration criterion and the long-term
memory. In a scenario 3, we compare Exact Split, TS Split and ILS Split
approaches with small sized VNRs (with 5 to 70 VMs), by running 50
simulations with 100 random incoming requests in each simulation. In a
scenario 4, we compare only TS Split and ILS Split approaches with large sized
VNRs (with 75 to 500 VMs) that the exact method could not solve in polynomial
time. We run there 10 simulations with 50 random incoming requests in each
simulation. In order to evaluate the acceptance rate metric, for each of
Exact Split, TS Split and ILS Split approach, we use the same adopted method of
Larumbe and Sanso (2013) for the intra-cloud mapping phase, presented in
Appendix. The adopted approach is implemented for scenario 3 with the exact
method using the CPLEX solver. For scenario 4, we implement in C++ an
iterated descent algorithm as LS method to perform it.

All topologies and features of the substrate network and the VNRs are randomly
generated by using a MATLAB program and the parameters set in Table 1. Three
types of computational resources were considered, which are CPU, memory and disk.
VNRs topologies are randomly generated in a partial mesh, with 50% probability
of interconnection between VMs. The multi-cloud substrate network interconnecting
all participating CPs is generated based on ISPs topologies (Bhamare et al., 2015;
Doverspike et al., 2010). Data centres in each substrate intra-cloud are interconnected
through a backbone network, similar to the NSFNet topology (Amokrane et al., 2013).
Substrate nodes are randomly located at different geographic areas and each data
centre is connected to the backbone network through the closest routers to its location.
The number of substrate nodes in each CP is set to 25, with 20% probability of
generating data centre nodes and 80% of router nodes. We consider that data centres
are heterogeneous (can support different categories of node) with different resource
capacities. Residual resource capacities for substrate nodes and substrate links, as well
as resources advertised in the discovery framework, are dynamically updated by CPs
after a VNR has been mapped or an existing VNR has been released. Details related
to the setup of cost parameters used to execute the mapping phase can be consulted in
Appendix.

216 M. Diallo et al.

6.2 Parameters of TS Split

Preliminary tests performed on small and large instances allowed us to define the
optimal parameters of the proposed algorithm, which mostly depend on the problem
size. The parameter STL is defined as 1/3 ∗

∑
a∈A

∣∣NV
a

∣∣ ∗ |Ia|, where Ia represents the

set of CPs supporting nodes of category a ∈ A. For small sized VNRs (scenario 1 and
scenario 3), the parameters Nmax and Dmax are defined as follows: Nmax = 40 ∗√
|NV | ∗ |I| and Dmax = 25 ∗

√
|NV |+ |I|. For large sized VNRs (scenario 2 and

scenario 4), Nmax = 20 ∗
√

|NV | ∗ |I| /2 and Dmax = 5 ∗ 104 ∗
√
|I| /|NV |3. The

number of restarts of the Diversification mechanism Dmax is reduced for large instances
of the problem due to the fact that the cost improvement is negligible compared to
the high increase in the resulting CPU time. Indeed, as VMs are interconnected in
partial mesh, with n VMs the number of VLs (in both directions of communication)

increases considerably in the range of
n (n− 1)

2
. The space of feasible solutions is then

significantly reduced because of the higher probabilities of resulting in some violated
VLs than in the case of small sized VNRs. Therefore, it becomes useless for the heuristic
to explore new areas more than necessary.

6.3 Results analysis

The results obtained with each of experiment 1 and experiment 2 are presented in the
following sections.

6.3.1 TS Split with experiment 1

Tables 2, 3, 4 and 5 show the results obtained with scenario 1, each of them
considering the algorithm with the long-term memory and without. For each VNR
instance, we report the optimal cost and the CPU time given by the exact method. To
demonstrate the efficiency of the proposed heuristic, we present the cost gaps (minimal,
maximal and mean) with the optimal solution, expressed in percentage and calculated
as 100 ∗ (cost(TS Split)− cost(Exact Split))/cost(Exact Split). We also report the
minimal, maximal and mean CPU execution time of the algorithm.

The reported results indicate on average zero cost gaps for VNRs with less than 50
VMs with the long-term memory executed. Table 2 presents the comparison between
Exact Split and TS Split with 5 CPs, where the aspiration criterion is performed. From
the table, we can see that TS Split algorithm is able to reach quasi-always the optimal
solution when the long-term memory is performed. The minimal cost gap is between 0%
and 0.1% and the maximal one is below 1.95%, which shows that the proposed heuristic
is very effective in finding optimal or near-optimal solutions. However, cost gaps are
higher when the long-term memory is not performed, giving minimal and maximal cost
gaps up to 10.31% and 25% respectively. This proves that the diversification mechanism
significantly improves the quality of the solutions, allowing the heuristic to effectively
explore more promising areas of research. In Table 3, which presents the results of
comparison with 5 CPs with no aspiration criterion performed, we can observe on
average a slight deterioration in the quality of the solutions, with a maximal cost gap up
to 2.69% when the long-term memory is executed. With no diversification mechanism,

A Tabu search approach 217

the cost gap is more significant without the aspiration criterion, giving maximums of
gap up to 28%.

Same conclusions are noticed in Tables 4 and 5. TS Split is as effective when the
complexity of the problem is increased with 10 CPs. As shown in Table 4, with the long-
term memory and the aspiration criterion performed, most of the cost gaps are below
0.4%, with an average of gap between 0% and 2.97%. There too, with no aspiration
criterion, as shown in Table 5, the cost gap increases a little, giving an average of gap
up to 4.04%. With no diversification mechanism, the quality of solutions is considerably
degraded, giving a maximal cost gap up to 32.1% and 34.3%, respectively with and
without the aspiration criterion performed.

The analysis of the execution time shows that the CPU time is correlated and
increases on average according to the size of the instances. With the exact method, as
expected, the CPU time increases exponentially from 0.07 s with 5 VMs to 7,846.1 s
with 70 VMs in the scenario with 5 CPs, and from 5.6 s with 5 VMs to 49,743.2 s
with 70 VMs in the scenario with 10 CPs. The proposed heuristic significantly reduces
the CPU time which becomes linear, besides being effective in finding near-optimal
solutions. As shown in Tables 2 and 4, with the long-term memory we can respectively
observe CPU time averages of only 0.09 s up to 35.39 s with 5 CPs, and from 0.34
s up to 78.83 s with 10 CPs. With no aspiration criterion performed, Tables 3 and 5
show CPU times a little more reduced, with averages ranging from 0.07 s to 34.69 s
and from 0.25 s to 69.85 s, respectively with 5 CPs and 10 CPs. This is due to the fact
that without aspiration criterion, in each iteration the heuristic only evaluates non-Tabu
moves, which is less expensive in terms of calculation time, however we have solutions
slightly of lower quality. Regarding all the four tables, without the long-term memory,
the CPU times are very low, with a maximum up to 0.29 s and 0.8 s respectively with
5 CPs and 10 CPs, but at the price of much less good quality of solutions.

Results obtained with scenario 2 are presented in Tables 6, 7, 8 and 9. For such large
sized instances of the problem, the Diversification mechanism was necessary mostly
because of the high number of VLs the heuristic has to satisfy. The simple algorithm
without long-term memory can easily be trapped in bad local optima, sometimes leading
to non-feasible solutions due to some violated VLs. In each of these four tables, for
each instance, we report first the minimal, maximal and mean evaluation cost. Then,
we present the gap between the mean cost and the maximal cost found by the heuristic.
Also, among the 10 simulations that could reach the best solution found by the heuristic,
we report the average of the total number of iterations nbIter that was necessary, as
well as the average of the iterations bestIter where the best solution was found. The
minimal, maximal and mean execution time is also given.

As shown in Tables 6 and 8, the algorithm is effective even for large sized instances,
giving averages of solution cost very close to the maximal values found. Indeed, the
average gap for all instances between the mean and the maximal cost is about 0.16% and
0.17%, respectively with 5 CPs and 10 CPs. In addition, the mean bestIter observed,
regarding the total number nbIter, shows that on average the algorithm can converge
fast towards the best solution found. On the other hand, as expected, the execution time
is higher with the large cases of the problem, but still satisfactory given the complexity
of the scenarios that makes harder to effectively explore all the solution space. With 5
CPs, we can note averages of CPU time ranging from 36.02 s for 75 VMs to 608.36
s for 500 VMs. With 10 CPs, the mean CPU time increases naturally from 84.69 s to
1,765.91 s, respectively for instances from 75 VMs to 500 VMs.

218 M. Diallo et al.

Table 2 Comparison between TS Split and Exact Split with 5 CPs and aspiration criterion
performed

Ex
ac
tS

pl
it

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n
TS

Sp
lit

w
ith

no
di
ve
rs
ifi
ca
tio

n

N
um

be
r

C
os
t

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

of
VM

s
M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

5
7.
17

0.
07

0
0

0
0.
05

0.
1

0.
09

0
0

0
0

0
0

10
17
.2
5

0.
48

0
0

0
0.
08

0.
15

0.
14

0
0

0
0

0
0

15
23
.5
8

20
.9

0
0

0
0.
23

0.
31

0.
3

0
0.
94

0.
18

0
0

0
20

35
.1
3

22
8.
8

0
0

0
0.
47

0.
59

0.
56

0
1.
13

0.
71

0
0.
01

0
25

47
.2
7

40
5.
1

0
0

0
0.
93

1.
08

1.
06

0
2.
68

1.
25

0.
01

0.
01

0.
01

30
37
.8
8

71
1.
9

0
0

0
1.
49

1.
73

1.
62

0
3.
5

1.
56

0.
01

0.
01

0.
01

35
58
.5
4

1,
63
5.
3

0
0

0
2.
92

3.
15

3.
03

0
5.
36

2.
12

0.
02

0.
04

0.
02

40
75
.1

3,
14
7.
6

0
0

0
4.
95

5.
14

5.
07

0.
05

4.
65

2.
08

0.
03

0.
04

0.
03

45
62
.1
7

3,
86
2.
2

0
0

0
6.
86

7.
08

7.
04

1.
16

8.
55

3.
47

0.
04

0.
1

0.
05

50
61
.7
3

4,
13
4.
3

0
0.
64

0.
18

10
.0
9

10
.6
4

10
.3
6

2.
21

10
.9

5.
49

0.
06

0.
09

0.
07

55
87
.6
9

4,
40
0.
6

0
1.
11

0.
24

14
.4
8

14
.9
6

14
.7
4

3.
61

14
.0
7

7.
74

0.
08

0.
13

0.
1

60
86
.9
4

5,
80
1.
9

0.
01

0.
81

0.
21

19
.9
6

20
.1
2

20
.4

4.
23

19
.8
9

9.
52

0.
11

0.
16

0.
12

65
91
.8
9

5,
34
7.
8

0.
06

1.
74

0.
5

25
.9
5

26
.2
7

26
.0
3

10
.3
1

22
.4
5

11
.6
6

0.
13

0.
16

0.
14

70
76
.2

7,
84
6.
1

0.
1

1.
95

1.
17

35
.1
7

35
.4
1

35
.3
9

9.
74

25
.0
2

11
.9
2

0.
17

0.
29

0.
2

A Tabu search approach 219

Table 3 Comparison between TS Split and Exact Split with 5 CPs and no aspiration criterion
performed

Ex
ac
tS

pl
it

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n
TS

Sp
lit

w
ith

no
di
ve
rs
ifi
ca
tio

n

N
um

be
r

C
os
t

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

of
VM

s
M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

5
7.
17

0.
07

0
0

0
0.
03

0.
1

0.
07

0
0

0
0

0
0

10
17
.2
5

0.
48

0
0

0
0.
08

0.
13

0.
11

0
0

0
0

0
0

15
23
.5
8

20
.9

0
0

0
0.
18

0.
3

0.
25

0
1.
07

0.
29

0
0

0
20

35
.1
3

22
8.
8

0
0

0
0.
36

0.
58

0.
44

0
1.
43

0.
72

0
0.
01

0
25

47
.2
7

40
5.
1

0
0

0
0.
7

1.
12

0.
78

0
2.
83

1.
78

0
0.
01

0.
01

30
37
.8
8

71
1.
9

0
0

0
1.
11

1.
45

1.
16

0.
01

3.
73

2.
26

0.
01

0.
01

0.
01

35
58
.5
4

1,
63
5.
3

0
0

0
2.
14

2.
2

2.
15

0.
03

5.
88

2.
92

0.
01

0.
02

0.
02

40
75
.1

3,
14
7.
6

0
0.
04

0.
01

3.
84

4.
19

4.
01

0.
05

6.
02

3.
25

0.
02

0.
03

0.
03

45
62
.1
7

3,
86
2.
2

0
0.
03

0.
02

6.
37

6.
91

6.
28

1.
17

9.
43

4.
1

0.
03

0.
06

0.
04

50
61
.7
3

4,
13
4.
33

0
0.
63

0.
34

9.
66

9.
95

9.
67

2.
34

12
.0
1

5.
56

0.
04

0.
08

0.
05

55
87
.6
9

4,
40
0.
6

0.
01

1.
16

0.
9

13
.6
5

13
.8
7

13
.6
8

3.
61

15
.7

7.
9

0.
07

0.
14

0.
1

60
86
.9
4

5,
80
1.
9

0.
01

0.
9

0.
82

18
.8
7

19
.1
2

18
.4
1

4.
29

28
.0
1

11
.6
1

0.
05

0.
2

0.
12

65
91
.8
9

5,
34
7.
8

0.
06

1.
92

0.
64

24
.1
4

24
.8
1

24
.6
2

10
.3
1

24
.3

13
.4
9

0.
11

0.
18

0.
13

70
76
.2

7,
84
6.
01

0.
18

2.
69

1.
55

34
.4
9

34
.8
8

34
.6
9

9.
76

27
.1

14
.0
5

0.
17

0.
21

0.
18

220 M. Diallo et al.

Table 4 Comparison between TS Split and Exact Split with 10 CPs and aspiration criterion
performed

Ex
ac
tS

pl
it

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n
TS

Sp
lit

w
ith

no
di
ve
rs
ifi
ca
tio

n

N
um

be
r

C
os
t

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

of
VM

s
M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

5
8.
13

5.
6

0
0.
01

0
0.
3

0.
58

0.
34

0
0.
3

0.
11

0
0

0
10

13
.2
2

56
.3

0
0

0
0.
44

0.
81

0.
47

0
0.
73

0.
38

0
0.
01

0.
01

15
22
.7
9

36
4.
7

0
0

0
0.
72

1.
04

0.
75

0
1.
35

0.
4

0.
01

0.
05

0.
03

20
24
.9

89
8.
2

0
0

0
1.
12

1.
47

1.
26

0
2.
08

1.
03

0.
03

0.
09

0.
06

25
32
.3

2,
00
0

0
0.
06

0
2.
23

2.
75

2.
34

0
3.
9

1.
35

0.
06

0.
13

0.
07

30
36
.0
5

2,
06
8.
1

0
0.
08

0
3.
93

4.
31

4.
06

0.
04

3.
96

1.
49

0.
09

0.
16

0.
1

35
43
.7
9

3,
72
2.
2

0
0.
12

0
6.
62

7.
05

6.
71

0.
12

4.
35

2.
97

0.
08

0.
17

0.
11

40
50
.5
1

5,
38
2.
2

0
0.
23

0.
06

11
.5
3

11
.9
5

11
.6
8

0.
16

7.
47

2.
99

0.
09

0.
19

0.
1

45
55
.7
6

8,
70
3.
1

0.
01

0.
34

0.
15

17
.3

17
.8
6

17
.5
5

1.
08

10
.0
9

5.
83

0.
11

0.
25

0.
13

50
70
.8
7

1,
27
05
.5

0
1.
65

0.
37

22
.0
7

22
.6
3

22
.3
9

1.
47

11
.2
9

6.
94

0.
2

0.
23

0.
19

55
78
.8
9

19
,1
59

0.
01

1.
9

0.
78

34
.2
1

35
.1
2

34
.6
2

2.
19

16
.8
5

9.
07

0.
22

0.
31

0.
3

60
12
3.
76

19
,4
70
.5

0.
12

2.
3

2.
64

44
.0
3

45
.2
3

44
.5

5.
55

22
.0
6

11
.5
8

0.
22

0.
41

0.
39

65
10
8.
9

24
,8
18

0.
22

3.
15

2.
5

57
.9
8

58
.4
4

58
.0
9

9.
65

23
.3
5

14
.9
2

0.
29

0.
57

0.
4

70
10
1.
65

49
,7
43
.2

0.
44

4.
13

2.
97

78
.2
9

78
.9
6

78
.8
3

18
.0
4

32
.1

19
.6
4

0.
4

0.
8

0.
53

A Tabu search approach 221

Table 5 Comparison between TS Split and Exact Split with 10 CPs and no aspiration criterion
performed

Ex
ac
tS

pl
it

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n
TS

Sp
lit

w
ith

no
di
ve
rs
ifi
ca
tio

n

N
um

be
r

C
os
t

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

C
os
t
ga
ps

(%
)

C
PU

(s
)

of
VM

s
M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

M
in

M
ax

M
ea
n

5
8.
13

5.
6

0
0

0
0.
16

0.
57

0.
25

0
0.
31

0.
12

0
0

0
10

13
.2
2

56
.3

0
0

0
0.
33

0.
68

0.
36

0
0.
75

0.
41

0
0.
01

0.
01

15
22
.7
9

36
4.
7

0
0.
24

0.
07

0.
54

0.
96

0.
67

0.
04

1.
49

0.
4

0.
01

0.
03

0.
02

20
24
.9

89
8.
2

0
0.
21

0.
09

1.
15

1.
39

1.
18

0
2

1.
03

0.
01

0.
07

0.
04

25
32
.3

2,
00
0

0
0.
25

0.
12

1.
99

2.
34

2.
05

0
4.
13

1.
41

0.
02

0.
1

0.
05

30
36
.0
5

2,
06
8.
1

0
0.
47

0.
16

3.
2

3.
51

3.
19

0.
05

4.
01

1.
5

0.
02

0.
12

0.
07

35
43
.7
9

3,
72
2.
2

0
0.
43

0.
24

5.
19

6.
16

5.
21

0.
11

5.
38

3.
01

0.
05

0.
15

0.
1

40
50
.5
1

5,
38
2.
2

0.
01

0.
31

0.
18

9.
34

10
.1
2

9.
54

0.
18

8.
85

3.
57

0.
08

0.
16

0.
09

45
55
.7
6

8,
70
3.
1

0.
01

1.
48

0.
27

14
.2
3

14
.7
2

14
.4
1

1.
08

13
.1
6

6.
13

0.
1

0.
17

0.
11

50
70
.8
7

12
,7
05
.5

0.
06

3.
76

0.
58

18
.2
4

19
.4
7

18
.5
8

1.
89

12
.4
8

8.
15

0.
18

0.
2

0.
14

55
78
.8
9

19
,1
59

0.
02

4.
12

1.
19

28
.6
1

29
.4
3

28
.7
7

2.
34

17
.2

9.
57

0.
2

0.
25

0.
21

60
12
3.
76

19
,4
70
.5

0.
43

5.
01

2.
9

36
.7
1

38
.6
8

37
.0
7

5.
57

23
.1
8

11
.9
7

0.
19

0.
33

0.
24

65
10
8.
9

24
,8
18

0.
56

5.
83

3.
08

48
.0
6

49
.1
4

48
.5
9

9.
74

25
.0
8

15
.8
3

0.
34

0.
41

0.
38

70
10
1.
65

49
,7
43
.2

0.
5

6.
91

4.
84

68
.4
5

69
.3
6

69
.8
5

18
.6
7

34
.3

20
.6

0.
3

0.
45

0.
42

222 M. Diallo et al.

Table 6 TS Split results for large sized VNRs with 5 CPs and aspiration criterion performed

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n

N
um

be
r
of

VM
s

C
os
t

M
ea
n
ga
p
to

nb
Ite

r
(m

ea
n)

#
be
st
Ite

r
(m

ea
n)

#
C
PU

(s
)

M
in

M
ax

M
ea
n

m
ax

co
st

(%
)

M
in

M
ax

M
ea
n

75
15
1.
02

15
1.
34

15
1.
15

0.
13

5,
75
0

1,
27
3

35
.4
2

37
.6
6

36
.0
2

10
0

20
0.
45

20
1.
75

20
1.
67

0.
04

5,
73
5

93
1

37
.1
7

42
.5
9

38
.9
8

12
5

25
0.
06

25
5.
1

25
4.
85

0.
1

5,
94
6

1,
78
1

38
.0
3

47
.2
3

41
.3
6

15
0

30
7.
43

31
0.
96

30
9.
9

0.
34

5,
59
2

17
4

42
.3

49
.5
5

44
.4
1

17
5

36
0.
39

36
2.
89

36
2.
08

0.
22

5,
94
8

1,
60
0

46
.3
6

52
.8
6

48
.3
7

20
0

35
9.
15

36
1.
05

36
0.
83

0.
06

6,
04
6

2,
29
1

50
.2
7

56
.3
2

52
.4
3

22
5

40
6.
35

40
8.
31

40
7.
92

0.
1

6,
60
8

2,
05
8

51
.0
4

61
.0
3

58
.2
6

25
0

43
9.
77

44
0.
8

44
0.
32

0.
11

6,
76
6

4,
76
6

60
.1
2

71
.7
4

66
.4
4

27
5

47
4.
16

47
5.
14

47
4.
62

0.
1

6,
78
6

4,
16
6

81
.0
7

10
2.
24

92
.0
6

30
0

49
1

49
4.
06

49
3.
4

0.
13

63
16

3,
03
4

10
7.
33

11
9.
47

11
2.
6

32
5

50
4.
26

50
7.
85

50
6.
9

0.
19

6,
17
9

1,
16
3

13
6.
84

14
1.
42

13
9.
11

35
0

55
5.
16

55
7.
58

55
6.
74

0.
15

5,
92
2

2,
02
1

15
9.
14

17
8.
64

16
3.
82

37
5

53
9.
18

54
1.
98

54
0.
03

0.
36

6,
13
5

1,
60
6

20
2.
35

21
0.
04

20
6.
82

40
0

58
9.
2

59
2.
24

59
1.
08

0.
2

6,
31
5

1,
38
5

25
3.
82

26
4.
11

25
8.
64

42
5

63
2.
09

63
6.
2

63
5.
13

0.
17

6,
56
0

1,
48
2

31
9.
07

35
9.
09

33
4.
21

45
0

59
7.
94

60
2.
18

60
2

0.
03

6,
09
5

2,
07
4

36
0.
74

40
5.
41

37
1.
91

47
5

64
9

65
2.
91

65
0.
88

0.
31

6,
28
5

1,
73
8

45
8.
19

47
0.
31

46
4.
14

50
0

68
8.
23

69
1.
74

69
0.
17

0.
23

6,
33
0

1,
38
1

56
8.
32

63
3.
94

60
8.
36

A Tabu search approach 223

Table 7 TS Split results for large sized VNRs with 5 CPs and no aspiration criterion
performed

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n

N
um

be
r
of

VM
s

C
os
t

M
ea
n
ga
p
to

nb
Ite

r
(m

ea
n)

#
be
st
Ite

r
(m

ea
n)

#
C
PU

(s
)

M
in

M
ax

M
ea
n

m
ax

co
st

(%
)

M
in

M
ax

M
ea
n

75
14
9.
84

15
1.
3

15
0.
85

0.
32

5,
98
4

3,
61
8

34
.6
4

37
.1
2

35
.8
2

10
0

19
8.
59

20
1.
75

20
0.
05

0.
84

5,
69
2

1,
90
0

35
.1

43
.1
8

37
.5
8

12
5

25
0

25
5.
1

25
2.
5

1.
02

5,
98
5

3,
51
4

37
.8
3

46
.9

40
.9
6

15
0

30
5.
2

31
0.
96

30
7.
8

1.
02

5,
59
2

17
4

42
.0
1

49
.1
1

43
.2
1

17
5

36
0.
39

36
2.
63

36
0.
41

0.
68

5,
94
8

1,
60
0

46
.3
6

52
.8
6

48
.3
7

20
0

35
4.
15

36
1.
05

35
7.
91

0.
87

6,
04
6

2,
29
1

50
.2
7

56
.3
2

52
.4
3

22
5

40
0.
66

40
8.
07

40
5.
34

0.
73

6,
60
8

2,
05
8

50
.9
4

60
.1
3

57
.6
2

25
0

42
1.
41

43
9.
68

42
8.
83

2.
72

6,
82
4

3,
82
4

60
.0
7

70
.8
7

64
.5
8

27
5

45
5.
16

47
5.
02

46
6.
88

1.
73

6,
36
8

2,
17
6

80
.7
6

92
.4
2

84
.9
6

30
0

49
1.
03

49
4.
06

49
3.
27

0.
16

6,
18
7

2,
03
0

10
3.
89

11
7.
27

10
6.
96

32
5

50
0.
12

50
7.
14

50
5.
39

0.
48

6,
25
2

1,
57
8

13
3.
52

14
1.
27

13
6.
85

35
0

55
1.
37

55
5.
95

55
5.
88

0.
3

5,
91
5

1,
42
4

15
5.
24

16
6.
68

15
9.
92

37
5

53
0.
99

54
1.
98

53
7.
2

0.
88

6,
15
3

2,
48
1

19
9.
69

20
6.
11

20
3.
08

40
0

58
3.
24

58
9.
07

58
5.
39

1.
16

6,
40
9

1,
60
5

24
8.
25

27
6.
69

25
7.
85

42
5

60
3.
82

63
6.
2

62
9.
72

1.
02

6,
66
6

1,
78
4

31
7.
29

33
6.
35

32
8.
09

45
0

57
5.
75

60
2.
18

59
8.
43

0.
62

6,
25
2

2,
90
2

34
9.
69

37
9.
97

36
9.
18

47
5

62
8.
49

65
2.
21

64
3.
76

1.
4

6,
14
4

1,
87
2

43
9.
75

45
0.
44

44
4.
03

50
0

67
5.
4

69
1.
74

68
7.
95

0.
55

6,
85
7

4,
17
0

55
2.
19

57
9.
69

57
4.
99

224 M. Diallo et al.

Table 8 TS Split results for large sized VNRs with 10 CPs and aspiration criterion performed

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n

N
um

be
r
of

VM
s

C
os
t

M
ea
n
ga
p
to

nb
Ite

r
(m

ea
n)

#
be
st
Ite

r
(m

ea
n)

#
C
PU

(s
)

M
in

M
ax

M
ea
n

m
ax

co
st

(%
)

M
in

M
ax

M
ea
n

75
10
2.
92

10
2.
95

10
2.
94

0.
01

11
,3
21

4,
58
7

84
.3
7

85
.4

84
.6
9

10
0

13
9.
92

13
9.
92

13
9.
92

0
11
,1
33

6,
03
7

89
.5
7

90
.2
5

89
.8
9

12
5

16
9.
35

17
0.
11

17
0.
03

0.
05

11
,4
75

1,
17
5

89
.7
9

91
.1
3

90
.5
6

15
0

20
4.
82

20
4.
82

20
4.
82

0
11
,5
15

1,
55
9

96
.2

98
.4
2

97
.6
1

17
5

24
2.
02

24
2.
97

24
2.
39

0.
24

11
,2
95

3,
13
9

98
.3
8

99
.9
5

99
.1
8

20
0

27
5.
94

27
7.
94

27
6.
16

0.
64

11
,4
61

7,
16
4

99
.2
5

10
2.
7

10
0.
58

22
5

30
1.
33

30
6.
54

30
5.
6

0.
31

11
,5
40

3,
66
8

11
6.
08

12
4.
39

12
0.
41

25
0

32
5.
26

33
6.
25

33
4.
73

0.
45

12
,0
98

5,
31
1

17
6.
42

18
7.
29

17
9.
89

27
5

37
5.
65

38
0.
05

37
9.
09

0.
25

11
,6
76

1,
30
2

21
6.
1

23
0.
7

22
1.
04

30
0

41
8.
76

43
6.
2

43
4.
87

0.
3

12
,2
81

3,
96
0

30
4.
06

32
7.
79

31
1.
32

32
5

44
1.
97

44
4.
16

44
4.
02

0.
03

12
,8
66

5,
41
1

38
3.
57

42
8.
49

40
5.
36

35
0

45
0.
43

45
2.
95

45
2.
43

0.
11

11
,9
54

2,
25
6

44
6.
87

51
3.
39

46
1.
05

37
5

50
6.
57

50
7.
78

50
7.
41

0.
07

12
,2
10

4,
70
5

57
2.
15

64
0.
47

59
4.
39

40
0

51
5.
79

51
8.
4

51
6.
83

0.
3

12
,9
87

4,
58
3

71
7.
89

80
3.
43

76
6.
97

42
5

60
0.
13

60
1.
97

60
1.
94

0
12
,4
82

3,
64
1

86
8.
12

96
1.
85

89
7.
87

45
0

64
3.
49

64
6.
28

64
6.
01

0.
04

12
,5
39

3,
24
9

1,
05
8.
32

1,
19
8.
71

1,
10
9

47
5

65
3.
28

67
6.
34

67
4.
29

0.
3

12
,4
27

5,
99
9

1,
32
7.
05

1,
40
4.
47

1,
36
9.
52

50
0

71
0.
62

71
1.
98

71
1.
82

0.
02

12
,8
65

8,
46
5

1,
69
3.
68

1,
84
8.
32

1,
76
5.
91

A Tabu search approach 225

Table 9 TS Split results for large sized VNRs with 10 CPs and no aspiration criterion
performed

TS
Sp
lit

w
ith

di
ve
rs
ifi
ca
tio

n

N
um

be
r
of

VM
s

C
os
t

M
ea
n
ga
p
to

nb
Ite

r
(m

ea
n)

#
be
st
Ite

r
(m

ea
n)

#
C
PU

(s
)

M
in

M
ax

M
ea
n

m
ax

co
st

(%
)

M
in

M
ax

M
ea
n

75
10
0.
48

10
2.
95

10
1.
86

1.
06

11
,3
21

4,
58
7

72
.6
8

74
.3

72
.3
4

10
0

13
9.
07

13
9.
92

13
9.
73

0.
14

11
,1
33

6,
03
7

76
.9
4

78
.6
3

77
.3
7

12
5

16
3.
27

17
0.
11

16
7.
76

1.
38

11
,4
75

1,
17
5

79
.2
5

83
.0
7

82
.6
7

15
0

17
9.
75

20
4.
82

20
1.
69

1.
53

11
,5
15

1,
55
9

88
.5
7

90
.7
1

90
.5
4

17
5

24
0.
81

24
2.
18

24
1.
93

0.
43

11
,2
95

3,
13
9

93
.0
9

94
.2
5

94
.5
3

20
0

27
1.
02

27
7.
94

27
5.
92

0.
73

11
,4
61

7,
16
4

96
.1
2

99
.5
9

97
.8
3

22
5

30
0.
87

30
4.
46

30
3.
68

0.
93

12
,0
06

7,
65
1

11
3.
64

12
1.
36

11
8.
16

25
0

32
1.
6

33
6.
25

32
7.
38

2.
64

12
,3
65

7,
06
3

16
6.
5

17
8.
29

17
3.
22

27
5

37
2.
28

37
9.
74

37
5.
43

1.
22

11
,7
58

3,
75
5

20
2.
86

22
4.
8

21
0.
06

30
0

40
7.
25

43
6.
2

42
6.
54

2.
21

12
,6
82

7,
41
9

29
1.
54

33
0.
06

30
5.
35

32
5

43
3.
2

44
2.
36

44
1.
65

0.
57

13
,4
06

6,
15
2

35
9.
21

42
8.
42

39
9.
82

35
0

45
0.
01

45
0.
13

45
0.
08

0.
63

12
,4
62

6,
05
3

43
5.
19

50
0.
46

47
2.
4

37
5

50
0.
38

50
7.
78

50
2.
19

1.
1

13
,7
89

6,
86
1

55
9.
1

62
3.
49

58
9.
42

40
0

50
4.
72

51
5.
89

51
1.
75

1.
28

12
,4
97

4,
45
1

64
4.
94

74
9.
72

66
9.
28

42
5

57
6.
52

60
0.
74

59
6.
86

0.
85

12
,8
45

7,
22
5

85
3.
69

93
1.
81

97
9

45
0

63
5.
25

64
6.
28

64
3.
48

0.
43

12
,5
05

3,
02
5

99
5.
55

1,
11
3.
31

1,
06
9.
45

47
5

64
4.
05

67
6.
28

66
5.
16

1.
65

11
,9
76

8,
08
0

1,
20
0.
96

1,
27
3.
03

1,
23
0.
36

50
0

69
6.
86

71
0.
12

70
2.
08

1.
39

12
,6
78

6,
67
8

1,
45
0.
24

1,
77
8.
22

1,
59
1.
96

226 M. Diallo et al.

Results obtained in Tables 7 and 9 confirm that without the aspiration criterion, less
good qualities of solution are noticed, with an average gap for all instances between the
mean and the maximal cost of about 0.92% and 1.12%, respectively with 5 CPs and
10 CPs. Furthermore, by observing the mean bestIter, without the aspiration criterion it
seems harder for the algorithm to converge more easily towards the best solution found.
However, the execution time is reduced, giving on average from 35.82 s to 574.99 s
with 5 CPs, and from 72.34 s to 1,591.96 s with 10 CPs.

The results analysis resulting from the experiment 1 shows that the proposed
algorithm is effective in solving such a combinatorial networking problem, even without
the aspiration criterion performed, by offering a good tradeoff between the quality of
the solutions and the highly reduced computing time.

6.3.2 TS Split with experiment 2

The performance of the proposed VNRs splitting strategy is first evaluated with the
acceptance rate, which represents one of the most conclusive metrics to evaluate the
efficiency of a successful performance-based VNRs splitting strategy. The acceptance
rate is measured as the number of VNRs that are successfully mapped by all CPs
selected by the splitting strategy, divided by the total number of incoming VNRs. In our
experiment, if only one VM or one VL of a request has a failed embedding (including
the failed inter-cloud connections), we consider the entire VNR rejected. From Figure 5,
which presents the average acceptance rate per size of request for small sized VNRs
(i.e., with scenario 3), it can be seen that the acceptance rate decreases on average
according to the number of communicating VMs. This is primarily due to the fact that
available resources of CPs can be limited over time because of requests that have not
yet expired. Thus, on average it becomes harder to satisfy all the QoS constraints for
VNRs with a greater number of VMs. Our splitting strategy, with both the exact and
the proposed heuristic approaches, leads to higher acceptance rates than the approach
of Leivadeas et al. (2013). Indeed, the mean acceptance rate considering all requests is
about 89.64% with 5 CPs and 95.09% with 10 CPs with Exact Split, and about 89.34%
with 5 CPs and 94.92% with 10 CPs with TS Split. The latter leads to a little more
requests rejections than the exact method, but almost negligible, which proves that our
heuristic is as effective as the exact method to perform good decisions in the splitting
strategy. However, ILS Split approach is more subject to VNRs rejections, even with the
large instances of the problem. For small sized VNRs as depicted in Figure 5, ILS Split
gives a mean acceptance rate for all requests of about 75.78% with 5 CPs and 84.15%
with 10 CPs. For large sized VNRs with scenario 4, as illustrated in Figure 6, TS Split
gives a mean acceptance rate for all requests of about 88.29% with 5 CPs and 95.1%
with 10 CPs, while with ILS Split we note 74.65% of mean acceptance rate with 5 CPs
and about 83.97% with 10 CPs. This means that with TS Split strategy, we improve
on average the acceptance rate by approximately 15.34% and 15.76%, respectively for
small and large sized VNRs. This can be explained by the fact that ILS Split strategy
tends to load most of the resource demands to CPs having the largest numbers of data
centres and substrate links. This may not be a representative performance criterion if
data centres are heterogeneous with different capacities. Also, the bandwidth capacities
on substrate paths are not necessarily related to the number of substrate links they
consider in the link provisioning cost, which can results in more rejected VLs.

A Tabu search approach 227

Figure 5 Average acceptance rate for small sized VNRs

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
ve

ra
ge

 a
cc

e
p

ta
n

ce
 r

at
e

 (
%

)

Number of VMs

Exact_Split_5CPs TS_Split_5CPs ILS_Split_5CPs
Exact_Split_10CPs TS_Split_10CPs ILS_Split_10CPs

Figure 6 Average acceptance rate for large sized VNRs

0

10

20

30

40

50

60

70

80

90

100

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

A
ve

ra
ge

 a
cc

e
p

ta
n

ce
 r

at
e

 (
%

)

Number of VMs

TS_Split_5CPs ILS_Split_5CPs
TS_Split_10CPs ILS_Split_10CPs

The execution time results are presented in Tables 10 and 11, respectively for
scenario 3 and scenario 4. For small sized VNRs in Table 10, the execution time
with Exact Split is naturally exponential, as the solver CPLEX uses branch-and-bound
methods. Considering all instances, in comparison with TS Split which gives an average
of about 9.22 s and 20.86 s respectively with 5 CPs and 10 CPs, ILS Split takes a little
more time to compute the splitting phase, resulting in an average of about 13.92 s and
33.4 s respectively with 5 CPs and 10 CPs. Same results can be noticed in Table 11
with large sized VNRs. The CPU time with TS Split is on average 180.4 s and 488.57 s
respectively with 5 CPs and 10 CPs, while with ILS Split it is about 268.35 s and
778.23 s respectively with 5 CPs and 10 CPs. This is probably due to the large number
of iterations they assess for the LS, and the high perturbation strength of 80% they
perform at each iteration for such a combinatorial problem, leading the LS to iteratively
calculate almost all the objective function.

228 M. Diallo et al.

Table 10 Average computing time for small sized VNRs

Number of VMs CPU (s) with 5 CPs CPU (s) with 10 CPs

Exact Split TS Split ILS Split Exact Split TS Split ILS Split

5 0.09 0.14 0.11 5.2 0.4 2.04
10 0.9 0.19 0.18 63.76 0.69 4.04
15 40.93 0.32 0.59 438.39 0.94 4.92
20 200.37 0.6 0.67 885.77 1.13 6.89
25 394.7 1.18 0.85 1,664.68 2.79 10.04
30 912.5 1.7 2.12 2,485.97 4.35 12.48
35 1,836.31 3.45 4.61 3,811.83 7.37 15.13
40 3,043.93 5.43 6.68 6,307.88 12.01 18.04
45 3,688.16 7.15 10.24 7,746.59 17.24 25.05
50 4,123.48 11.01 19.36 12,326.89 23.8 36.73
55 4,375.38 15.05 27.37 19,487.75 34.98 57.15
60 5,741.5 20.41 33.45 21,795 46.51 60.54
65 6,947.85 26.8 37.1 29,121.24 59.97 70.1
70 7,486.48 35.65 51.52 49,672.83 79.89 114.39

Table 11 Average computing time for large sized VNRs

Number of VMs CPU (s) with 5 CPs CPU (s) with 10 CPs

TS Split ILS Split TS Split ILS Split

75 35.5 55.1 84.7 159.8
100 37.1 75.3 89.9 218.4
125 43.6 90.3 90.6 261.9
150 52.4 118.8 97.6 344.5
175 63 134.6 109.2 390.3
200 71.5 149.2 119.6 432.7
225 77.8 163.9 120.4 475.3
250 85.2 175.7 179.9 509.5
275 95.8 198.1 221 574.5
300 133.9 225.4 311.3 653.7
325 140.7 238 405.4 690.2
350 162.9 274.9 461.1 797.2
375 205.6 301.7 594.4 874.9
400 255 347.5 767 1,007.8
425 328.3 422 897.9 1,223.8
450 400 512.1 1,109 1,485.1
475 467.3 643.4 1,369.5 1,865.9
500 591.6 704.4 1,765.9 2,042.8

We also evaluate the average splitting rate, calculated as the number of assigned
segments to the selected CPs at each incoming VNR, divided by the total number of
CPs. As shown in Figures 7 and 8, the splitting rate increases on average according to
the size of requests. For small sized VNRs as depicted in Figure 7, both Exact Split and
TS Split approaches give substantially same results, with an average splitting rate for

A Tabu search approach 229

all requests of about 51.82% and 36.73% respectively with 5 CPs and 10 CPs, while
ILS Split gives much higher splitting rates, which are on average 79.65% and 59.16%
respectively with 5 CPs and 10 CPs. For large sized VNRs as depicted in Figure 8,
the average splitting rate for all requests with TS Split is about 74.73% and 51.49%
respectively with 5 CPs and 10 CPs, while with ILS Split it is about 97.22% and 70.83%
respectively with 5 CPs and 10 CPs. This means that our strategy efficiently assigns
most of the VNRs to 3 up to 5 CPs among the participating CPs, thus avoiding useless
inter-cloud traffics. However, ILS Split assigns most of the VNRs on average to 4 up to
7 CPs, without giving better acceptance rates. A VNR splitting rate unnecessarily high
should be avoidable. It generally introduces a large number of VLs transiting through
the inter-cloud paths, resulting in high overall delays and huge additional expenditures
for the SP.

Figure 7 Average splitting rate for small sized VNRs

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
ve

ra
ge

 s
p

lit
ti

n
g

ra
te

 (
%

)

Number of VMs

Exact_Split_5CPs TS_Split_5CPs ILS_Split_5CPs

Exact_Split_10CPs TS_Split_10CPs ILS_Split_10CPs

Figure 8 Average splitting rate for large sized VNRs

0

10

20

30

40

50

60

70

80

90

100

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

A
ve

ra
ge

 s
pl

it
ti

ng
 ra

te
 (%

)

Number of VMs

TS_Split_5CPs ILS_Split_5CPs
TS_Split_10CPs ILS_Split_10CPs

230 M. Diallo et al.

Figure 9 Average inter-cloud delay for small sized VNRs

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
ve

ra
ge

 in
te

r-
cl

o
u

d
 d

e
la

y
(m

ili
se

c)

Number of VMs

Exact_Split_5CPs TS_Split_5CPs ILS_Split_5CPs

Exact_Split_10CPs TS_Split_10CPs ILS_Split_10CPs

Figure 10 Average inter-cloud delay for large sized VNRs

0

10

20

30

40

50

60

70

80

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

A
ve

ra
ge

 in
te

r-
cl

ou
d

de
la

y
(m

ili
se

c)

Number of VMs

TS_Split_5CPs ILS_Split_5CPs

TS_Split_10CPs ILS_Split_10CPs

Finally, we present the average inter-cloud delay in Figures 9 and 10, which is very
closely in correlation with the longer of chosen paths and the splitting rate. The delay
represents the performance metric that influences the most the QoS. As expected,
for both scenarios the inter-cloud delay increases on average according to the size
of requests. In Figure 9, we can see that TS Split gives less inter-cloud delays than
Exact Split and ILS Split. In comparison with the exact method, this is due to the fact
that TS Split algorithm is able to perform a VLs routing by considering not only the
shortest path (defined by the number of hops), but also the delay on the path. The solver
of exact method meanwhile randomly chooses a path between those with the same
shortest length, regardless of the delay on the paths. ILS Split approach gives more inter-
cloud delays considering all requests, which are on average about 21.87 ms with 5 CPs

A Tabu search approach 231

and 34.93 ms with 10 CPs, against 15.45 ms with 5 CPs and 21.15 ms with 10 CPs
for TS Split algorithm. For large sized VNRs, Figure 10 depicts the same conclusion,
with an average inter-cloud delay of about 44.27 ms with 5 CPs and 56.64 ms with 10
CPs for ILS Split approach, while TS Split results in an average delay of about 23.54
ms with 5 CPs and 37.51 ms with 10 CPs. This means that on average the inter-cloud
delay is improved by about 40.29% with our TS Split approach. We can also notice that
a high splitting rate has a significant influence on the inter-cloud delay, by resulting in
more VMs communicating through inter-cloud links. Thus, we can conclude that our
approach penalises more effectively long inter-cloud paths than ILS Split approach.

7 Conclusions

In this paper, the NP-hard problem of VNE across multiple IaaS-based cloud networks
has been addressed. A TS approach including a long-term memory mechanism has been
proposed in order to perform, in polynomial time, an efficient VNRs splitting strategy
formalised as a mathematical ILP model. The proposed strategy aims at improving the
performance and the QoS of resulting VNR segments that are mapped onto the selected
cloud infrastructure networks. The comparison results with the exact method, used to
execute small sized instances of the problem, show that the proposed algorithm is able
to generate, in a highly reduced computing time, solution costs very close to the upper
bounds, with an average cost gap from about 0% to a maximum of 2.97%.

Simulations performed with large instances of the problem and comparing our
approach with an other baseline method, show the efficiency of the proposed approach
in dealing with the scalability aspect of such a combinatorial networking problem. Our
approach improves several performance criteria, including the acceptance rate and the
network communication delay, which are respectively improved of about 15.55% and
40.29%.

Future works might be interested in developing efficient and fast dynamic hybrid
metaheuristics, by combining different approaches and optimisation techniques to solve
large instances of the problem. Furthermore, as the SP is also interested in minimising
the resource provisioning price, it is worthwhile to consider in future works a multi-
objective optimisation approach, which can extend the proposed mathematical model by
also taking into account the minimisation of the SP expenditure in the splitting strategy.

References

Amazon (2017) EC2Instance Types [online] https://aws.amazon.com/fr/ec2/instancetypes/ (accessed 13
Dec 2017).

Amokrane, A., Zhani, M.F., Langar, R., Boutaba, R. and Pujolle, G. (2013) ‘Greenhead: virtual data
center embedding across distributed infrastructures’, IEEE Transactions on Cloud Computing,
Vol. 1, No. 1, pp.36–49.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I. and Zaharia, M. (2010) ‘A view of cloud computing’, Communications of
the ACM, Vol. 53, No. 4, pp.50–58.

Ayoubi, S., Assi, C., Shaban, K. and Narayanan, L. (2015) ‘MINTED: multicast virtual network
embedding in cloud data centers with delay Ccnstraints’, IEEE Transactions on Communications,
Vol. 63, No. 4, pp.1291–1305.

232 M. Diallo et al.

Belbekkouche, A., Hasan, M.M. and Karmouch, A. (2012) ‘Resource discovery and allocation in
network resource virtualization’, IEEE Communications Surveys and Tutorials, Vol. 14, No. 4,
pp.1114–1128.

Bhamare, D., Jain, R., Samaka, M., Vaszkun, G. and Erbad, A. (2015) ‘Multi-cloud distribution
of virtual functions and dynamic service deployment: open ADN perspective’, in 2015 IEEE
International Conference on Cloud Engineering (IC2E), IEEE, pp.299–304.

Chaisiri, S., Lee, B-S. and Niyato, D. (2012) ‘Optimization of resource provisioning cost in cloud
computing’, IEEE Transactions on Services Computing, Vol. 5, No. 2, pp.164–177.

Chowdhury, M., Rahman, M.R. and Boutaba, R. (2012) ‘Vineyard: virtual network embedding
algorithms with coordinated node and link mapping’, IEEE/ACM Transactions on Networking
(TON), Vol. 20, No. 1, pp.206–219.

Dietrich, D., Rizk, A. and Papadimitriou, P. (2015) ‘Multi-provider virtual network embedding
with limited information disclosure’, IEEE Transactions on Network and Service Management,
Vol. 12, No. 2, pp.188–201.

Doverspike, R.D., Ramakrishnan, K. and Chase, C. (2010) ‘Structural overview of ISP networks’,
in Kalmanek, C., Misra, S. and Yang, R. (Eds.): Guide to Reliable Internet Services and
Applications, pp.19–93, Springer, London.

Fischer, A., Botero, J.F., Beck, M.T., De Meer, H. and Hesselbach, X. (2013) ‘Virtual network
embedding: a survey’, IEEE Communications Surveys and Tutorials, Vol. 15, No. 4,
pp.1888–1906.

Glover, F. (1989) ‘Tabu search – part i’, ORSA J. Computing, Vol. 1, No. 3, pp.190–206.
Glover, F. (1990) ‘Tabu search – part ii’, ORSA J. Computing, Vol. 2, No. 1, pp.4–32.
Gong, S., Chen, J., Yin, X. and Zhu, Q. (2016) ‘Survivable virtual network embedding across multiple

domains’, in Computer and Communications IEEE 2nd International Conference.
Grozev, N. and Buyya, R. (2012) ‘Inter-cloud architectures and application brokering: taxonomy and

survey’, Software – Practice and Experience, Vol. 44, No. 3, pp.369–390.
Hesselbach, X., Amazonas, J.R., Villanueva, S. and Botero, J.F. (2016) ‘Coordinated node and

link mapping VNE using a new paths algebra strategy’, Journal of Network and Computer
Applications, Vol. 69, pp.14–26.

Houidi, I., Louati, W., Ameur, W.B. and Zeghlache, D. (2011) ‘Virtual network provisioning across
multiple substrate networks’, Computer Networks, Vol. 55, No. 4, pp.1011–1023.

Houidi, I., Louati, W. and Zeghlache, D. (2015) ‘Exact multi-objective virtual network embedding in
cloud environments’, The Computer Journal, Vol. 58, No. 3, pp.403–415.

Justafort, V.D., Beaubrun, R. and Pierre, S. (2015) ‘On the carbon footprint optimization in an
intercloud environment’, IEEE Transactions on Cloud Computing, Vol. 6, No. 3, pp.829–842.

Khan, M.M.A., Shahriar, N., Ahmed, R. and Boutaba, R. (2016) ‘Multi-path link embedding for
survivability in virtual networks’, IEEE Transactions on Network and Service Management,
Vol. 13, No. 2, pp.253–266.

Larumbe, F. and Sanso, B. (2012) ‘Cloptimus: a multi-objective cloud data center and software
component location framework’, in 2012 IEEE 1st International Conference on Cloud
Networking (CLOUDNET), IEEE, pp.23–28.

Larumbe, F. and Sanso, B. (2013) ‘A tabu search algorithm for the location of data centers
and software components in green cloud computing networks’, IEEE Transactions on Cloud
Computing, Vol. 1, No. 1, pp.22–35.

Leivadeas, A., Papagianni, C. and Papavassiliou, S. (2013) ‘Efficient resource mapping framework
over networked clouds via iterated local search-based request partitioning’, IEEE Transactions
on Parallel and Distributed Systems, Vol. 24, No. 6, pp.1077–1086.

Li, S., Saidi, M.Y. and Chen, K. (2016) ‘A cloud-oriented algorithm for virtual network embedding
over multi-domain’, in Local Computer Networks Workshops IEEE 41st Conference.

A Tabu search approach 233

Lv, B., Wang, Z., Huang, T., Chen, J. and Liu, Y. (2010) ‘Virtual resource organization and
virtual network embedding across multiple domains’, in Multimedia Information Networking and
Security (MINES), 2010 IEEE International Conference, pp.725–728.

Mano, T., Inoue, T., Ikarashi, D., Hamada, K., Mizutani, K. and Akashi, O. (2016) ‘Efficient virtual
network optimization across multiple domains without revealing private information’, IEEE
Transactions on Network and Service Management, Vol. 13, No. 3, pp.477–488.

Manvi, S.S. and Shyam, G.K. (2014) ‘Resource management for infrastructure as a service (IaaS)
in cloud computing: a survey’, Journal of Network and Computer Applications, Vol. 41,
pp.424–440.

Mechtri, M., Hadji, M. and Zeghlache, D. (2015) ‘Exact and heuristic resource mapping algorithms
for distributed and hybrid clouds’, IEEE Transactions on Cloud Computing, Vol. 5, No. 4,
pp.681–696.

Melo, M., Sargento, S., Killat, U., Timm-Giel, A. and Carapinha, J. (2013) ‘Optimal virtual network
embedding: node-link formulation’, IEEE Transactions on Network and Service Management,
Vol. 10, No. 4, pp.356–368.

Melo, M., Sargento, S. Killat, U., Timm-Giel, A. and Carapinha, J. (2015) ‘Optimal virtual network
embedding: energy aware formulation’, Computer Networks, Vol. 91, No. C, pp.184–195.

Rafael, M-V., Rubén, S.M. and Ignacio, M.L. (2012) ‘IaaS cloud architecture: from virtualized
datacenters to federated cloud infrastructures’, IEEE Computer Society, Vol. 45, No. 12,
pp.65–72.

Rahman, M.R. and Boutaba, R. (2013) ‘Svne: Survivable virtual network embedding algorithms for
network virtualization’, IEEE Transactions on Network and Service Management, Vol. 10, No. 2,
pp.105–118.

Samuel, F., Chowdhury, M. and Boutaba, R. (2013) ‘Polyvine: policy-based virtual network
embedding across multiple domains’, Journal of Internet Services and Applications, Vol. 4,
No. 1, pp.1–23.

Sanchis, L. (1989) ‘Multiple-way network partitioning’, IEEE Trans. Computers, Vol. 38, No. 1,
pp.62–81.

Tao, L., Zhao, C., Thulasiraman, K. and Swamy, M. (1992) ‘Simulated annealing and Tabu search
algorithms for mulitway graph partitioning’, Journal of Circuits, Systems and Computers, Vol. 2,
No. 2, pp.159–185.

Zhang, S., Qian, Z., Wu, J., Lu, S. and Epstein, L. (2014) ‘Virtual network embedding with
opportunistic resource sharing’, IEEE Transactions on Parallel and Distributed Systems, Vol. 25,
No. 3, pp.816–827.

Zhang, J., Huang, H. and Wang, X. (2016) ‘Resource provision algorithms in cloud computing: a
survey’, Journal of Network and Computer Applications, Vol. 64, No. C, pp.23–42.

Appendix

Formulation of the VNR segments intra-cloud mapping problem

In this appendix, we present the MILP formulation of the adopted intra-cloud mapping
approach, which follows the work of Larumbe and Sanso (2013). Details related to the
setup of cost parameters used for our simulations are also given. All the notation used
for the modelling of the intra-cloud substrate network and the VNR segments, as well
as the formulation of the problem, can be consulted in Table 12.

234 M. Diallo et al.

Table 12 Notation for the VNR segments intra-cloud mapping problem

Symbols Description

Global sets

A Set of node categories
T Set of link types
R Set of computational resource types
I Set of CPs

Substrate intra-cloud network

GS
i Graph representing the substrate network of CP i

NS
i Set of substrate nodes in GS

i

LS
i Set of substrate links in GS

i

Di Set of data centres of CP i

ϕi PoP node (transit network) of CP i

Fi Set of all paths in CP i’s network
Pdc Set of all paths between data centres d and c, d, c ∈ Di

Pdϕ
i

Set of all paths between data centre d ∈ Di and PoP node ϕi

Ke Set of all paths in Fi spanning link e ∈ LS
i

Bte Available bandwidth capacity of the channel of type t ∈ T of link e ∈ LS
i

de Delay bound of link e ∈ LS
i

Qrad Available capacity of resource r ∈ R in data centre d ∈ Di for nodes of category
a ∈ A (Qrad ∈ N)

Uadr Usage of resource r ∈ R by all VMs of node category a ∈ A assigned to data
centre d ∈ Di

Eadr Average power (in watts) consumed by a VM of node category a ∈ A assigned
to data centre d ∈ Di

in terms of resource r ∈ R

ωd Average power (in watts) consumed by all VMs assigned to data centre d ∈ Di

ρd Power Usage Effectiveness (PUE) of data centre d ∈ Di

θd CO2 emissions in data centre d ∈ Di (in g/KWh)

Virtual network request segment

GV
i Graph representing the VNR segment assigned to CP i

NV
i Set of VMs assigned to CP i

LV
i Set of VLs assigned to CP i

NV
ai Set of VMs of node category a ∈ A assigned to CP i

LV
ti Set of VLs of type t ∈ T exclusively assigned to CP i

LV
tϕ

i
Set of VLs of type t ∈ T assigned to an inter-cloud link of endpoint CP i

qrv Amount of resource r ∈ R required by VM v ∈ NV
i

bl Bandwidth demand of VL l ∈ LV
i

δl Maximum delay allowed for VL l ∈ LV
i

Costs

cSrai Unit resource cost for CP i for using resource r ∈ R for nodes of category
a ∈ A (in $/unit)

cti Unit bandwidth cost for CP i for using a link channel of type t ∈ T (in $/Mbps)
cEti Extra unit bandwidth cost for CP i for using a link channel of type t ∈ T

(in $/Mbps)

A Tabu search approach 235

Table 12 Notation for the VNR segments intra-cloud mapping problem (continued)

Symbols Description

Costs

cωd Unit electricity cost in data centre d ∈ Di (in $/MWh)
℘D Penalty for each millisecond of delay on VLs (in $/ms)
℘O
d Penalty for emitting CO2 in data centre d ∈ Di (in $/tonne)

CS
i Total computing resource cost for CP i (in $/h)

CT
i Total traffic cost for CP i (in $/h)

CD
i Total delay penalty for CP i (in $/h)

Cω
i Total energy cost for CP i (in $/h)

CO
i Total environmental penalty for CP i (in $/h)

Decision variables

Xvn Binary variable set to 1 if VM v ∈ NV
ai, a ∈ A, is assigned to substrate node

n ∈ NS
i ; 0 otherwise

Ylφ Binary variable set to 1 if VL l ∈ LV
ti , t ∈ T , is assigned to path φ ∈ Pdc,

d, c ∈ Di; 0 otherwise
Zkγ Binary variable set to 1 if VL k ∈ LV

tϕ
i
, t ∈ T , is assigned to path γ ∈ Pdϕ

i
,

d ∈ Di; 0 otherwise

Adopted intra-cloud mapping approach

The following are the formulas that define each cost and penalty of the multi-objective
function. In our solution, the mapping of a VM remains at the data centre level. VMs
requirements are expressed in terms of computational resource demand in set R, not in
terms of number of servers. Therefore, some formulas originally defined by Larumbe
and Sanso (2013) were re-stated. Moreover, we did not consider the path splitting
scenario, neither the data centres CAPEX and OPEX since we assign VMs to existing
data centres. Note that each cost is defined in dollars per hour ($/h).

Servers cost is re-stated as computational resources cost and is calculated as follows:

CSi =
∑
d∈Di

∑
r∈R

∑
a∈A

∑
v∈NV

ai

cSraiqrvXvd (22)

The total traffic cost for CP i is defined as follows, with an extra cost stated for inter-
cloud VLs:

CTi =
∑
d∈Di

∑
c∈Di

∑
φ∈Pdc

∑
e∈φ

∑
t∈T

∑
l∈LV

ti

ctiblYlφ

+
∑
d∈Di

∑
γ∈Pdϕ

i

∑
e∈γ

∑
t∈T

∑
k∈LV

tϕ
i

(
cti + cEti

)
bkZkγ

(23)

The total delay penalty for CP i is re-defined as follows:

Ci
D = ℘D

∑
d∈Di

∑
c∈Di

∑
φ∈Pdc

∑
e∈φ

∑
t∈T

∑
l∈LV

ti

δeYlφ

+
∑
d∈Di

∑
γ∈Pdϕ

i

∑
e∈γ

∑
t∈T

∑
k∈LV

tϕ
i

δeZkγ

 (24)

236 M. Diallo et al.

The average power consumed by all VMs assigned to data centre d ∈ Di is re-stated as
follows, estimated as a function of the utilisation of CPU resource and disk resource,
by following the principles used by Justafort et al. (2015):

ωd =
∑
a∈A

(
Edar1

Udar1
+ Edar2

Udar2

)
, ∀ d ∈ Di, (25)

where Edar1
and Edar2

represent (in watts) the average power consumed by a VM of
node category a ∈ A assigned to data centre d, respectively in terms of CPU resource
and disk resource. Udar1

and Udar2
define respectively the CPU resource usage and the

disk resource usage by all VMs of node category a ∈ A assigned to data centre d, given
by:

Udar =

∑
v∈NV

ai

qrvXvd

max (Qrad, 1)
, ∀ d ∈ Di, a ∈ A, r ∈ R

(26)

The total energy cost for CP i is then defined as follows:

Ci
ω = 10−6

∑
d∈Di

cωd ρdωd, (27)

The total environmental penalty for CP i is given as follows:

Ci
O = 10−9

∑
d∈Di

℘Od θdρdωd (28)

The objective function for the intra-cloud mapping phase is then defined as follows,
with each cost weighted by a parameter that allows CPs to modify the costs priority:

MIN
αCSi + βCTi + λCDi +ϖCω

i + oCOi (29)

Subject to:∑
n∈NS

i \Di

Xvn = 0, ∀ v ∈ NV
ai , a ∈ A (30)

∑
d∈Di

Xvd = 1, ∀ v ∈ NV
ai , a ∈ A (31)

Constraints (30) and (31) ensure respectively that VMs are only assigned to data centres,
and each VM must be assigned to exactly one data centre.

Ylφ ≤ Xud +Xvc

2
, ∀ l = uv ∈ LV

ti , t ∈ T , u, v ∈ NV
ai(v ̸= u), a ∈ A,

φ ∈ Pdc, d, c ∈ Di

(32)

Zkγ ≤ Xvd, ∀ k = vϕi ∈ LV
tϕ

i
, t ∈ T, v ∈ NV

ai , γ ∈ Pdϕ
i
, d ∈ Di (33)

A Tabu search approach 237

Constraints (32) and (33) state respectively the binary value of variables Ylφ and Zkγ .

∑
d∈Di

∑
c∈Di

∑
φ∈Pdc

Ylφ = 1, ∀ l ∈ LV
ti , t ∈ T (34)

∑
d∈Di

∑
γ∈Pdϕ

i

Zkγ = 1, ∀ k ∈ LV
tϕ

i
, t ∈ T (35)

Constraint (34) ensures that each VL exclusively assigned to a CP must be mapped to
a unique path between two different data centres, otherwise to a unique path intra-data
centre. Constraint (35) ensures that each VL partially assigned to a CP must be mapped
to a unique path between a data centre and the PoP node of the CP.∑

v∈NV
ai

qrvXvd ≤ Qrad, ∀ r ∈ R, a ∈ A, d ∈ Di (36)

Qrad = Qrad −
∑

v∈NV
ai

qrvXvd, ∀ r ∈ R, a ∈ A, d ∈ Di (37)

Constraint (36) ensures that the total amount of a resource required by all VMs assigned
to a data centre must not exceed its residual capacity. Constraint (37) updates this
residual capacity after each VNR is successfully mapped.

B−→
te

= B←−
te
, ∀ e ∈ LS

ti (38)

Constraint (38) states that the bandwidth capacity of a channel of a link type is the same
in both directions on every substrate link.∑

m∈NS
i

fuv
nm +Xvnbl =

∑
m∈NS

i

fuv
mn +Xunbl, ∀ u, v ∈ NV

i , v ̸= u,

n ∈ NS
i , l = uv ∈ LV

i

(39)

Constraint (39) guaranties the flow conservation for every amount of traffic l = uv from
VM u to VM v, with a bandwidth demand bl routed on substrate link e = mn ∈ LS

i .∑
φ∈Ke

∑
l∈LV

ti

blYlφ +
∑

γ∈Ke

∑
k∈LV

tϕ
i

bkZkγ ≤ Bte, ∀ e ∈ LS
i , t ∈ T (40)

Be = Be −

 ∑
φ∈Ke

∑
l∈LV

it

blYlφ +
∑

γ∈Ke

∑
k∈LV

tϕ
i

bkZkγ

, ∀ e ∈ LS
ti, t ∈ T (41)

Constraint (40) ensures that the total bandwidth demand of all VLs routed on a substrate
link must not exceed the residual bandwidth capacity of the corresponding channel.
Constraint (41) updates this residual capacity after a VNR is successfully mapped.∑

d∈Di

∑
c∈Di

∑
φ∈Pdc

∑
e∈φ

deYlφ ≤ δl, ∀ l ∈ LV
ti , t ∈ T (42)

∑
d∈Di

∑
γ∈Pdϕ

i

∑
e∈γ

deZlγ ≤ δk, ∀ k ∈ LV
tϕ

i
, t ∈ T (43)

238 M. Diallo et al.

Constraints (42) and (43) ensure that the restriction on the maximum delay allowed for
a VL is not violated.

Xvn ∈ {0, 1} ∀ v ∈ NV
ai , a ∈ A, n ∈ NS

i (44)

Ylφ ∈ {0, 1} ∀ l ∈ LV
ti , t ∈ T, φ ∈ Pdc, d, c ∈ Di (45)

Zkγ ∈ {0, 1} ∀ k ∈ LV
tϕ

i
, t ∈ T, γ ∈ Pdϕ

i
, d ∈ Di (46)

ωd ∈ R≥0 ∀ d ∈ Di (47)

Constraints (44)–(47) express the domain of definition of each variable.

Cost parameters setup

The cost parameters setting follows the experimentation setup defined in Larumbe and
Sanso (2013), but they are specified for an hour time period. We chose the delay
as the first optimisation priority of the multi-objective function, by using the same
weight attribution as in Larumbe and Sanso (2013). The unit computational resource
cost is randomly determined in the interval $[50, 60]/cores/h for CPU resource, $([50,
60])/10/GB/h for memory resource and $([50, 60])/100/GB/h for disk resource. The unit
bandwidth cost for each link type is randomly chosen in the interval $[12, 15]/Mbps/h,
and the corresponding extra unit bandwidth cost is estimated at 25% of the initial unit
cost. The delay penalty is set to $0.15/(ms/packet)/h. The average power consumed by
a VM assigned to a data centre is randomly set in the interval [200, 300] W (with 60%
of the energy for CPU resource and 40% for disk resource). The unit electricity cost
is randomly distributed in the interval $[30, 70]/MWh. The PUE of a data centre is
1.5. The amount of CO2 emissions in a data centre is calculated by summing values in
the set {10, 66, 443, 960} g/KWh, each of them first multiplied by a greenness factor
randomly set between 0 and 1. The penalty for emitting CO2 in a data centre is defined
as $1,000/tonne.

