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Abstract: In collaborative filtering users with highly similar tastes are termed ‘near neighbours’ 
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Coefficient and the Cosine Similarity and has been proven to be particularly effective. 
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1 Introduction 

Collaborative filtering (CF) computes personalised 
recommendations, by taking into account users’ past likings 
and tastes, in the form of ratings entered in the CF ratings 

database. User-user CF algorithms firstly identify people 
having similar tastes, by examining the resemblance of 
already entered ratings; for each user u, other users having 
highly similar tastes with u are designated as u’s nearest 
neighbours (NNs). Afterwards, in order to predict the rating 



48 D. Margaris and C. Vassilakis  

that u would give to an item i that u has not reviewed yet, 
the ratings assigned to item i by u’s NNs are combined 
(Balabanovic and Shoham, 1997), under the assumption that 
users are highly likely to exhibit similar tastes in the future, 
if they have done so in the past as well (Ekstrand et al., 
2011; Yu et al., 2004). Analogous practices are followed in 
item-item CF algorithms, where the first step is to locate 
items that are similarly rated by users. 

Formally, the likeness of ratings between two users is 
expressed using a correlation coefficient, the range of which 
is typically either [–1, 1] or [0, 1], with higher values 
denoting greater likeness. 

Under this common scheme, only direct resemblance 
between two users is considered in the formulation of the 
set of NNs; therefore, users that have not rated any item in 
common cannot be used as NNs with each other. In this 
paper, we explore the exploitation of the transitivity concept 
in user similarity, in order to broaden the set of NNs that 
contribute in the formulation of rating predictions and 
recommendations for each user, and thus tackle the ‘grey 
sheep’ problem. This exploitation of the transitivity concept 
is analogous to the transitive usage of the ‘knows’ 
relationship in FOAF ontologies (Brickley, 2005) or the use 
of the ‘trusts’ relationship in trust networks (Jøsang and 
Pope, 2005). Effectively, we start from the observation that 
NNs are grouped together by the semantics of homophily 
(Lazarsfeld and Merton, 1954; McPherson and  
Smith-Lovin, 1987), i.e., bonding between NNs is 
established due to their similarity. Subsequently, taking into 
account that homophily-based relationships have been 
shown to be transitive (‘a friend of a friend is a friend’) 
(Hoff, 2008; De la Haye et al., 2011), we investigate models 
of NN transitivity, according to which NN relationships can 
be derived and used in the rating prediction process. 

To this end, in this paper: 

1 we introduce the concept of FOAF NN (NNF), i.e., 
users that are considered as NNs due to the fact that 
they are NNs to some third user u′; furthermore 

2 we investigate how we can incorporate the NNF 
information to the rating prediction computation 
process, in order to improve the prediction coverage of 
CF recommender systems (RSs), while maintaining the 
quality of rating predictions. The incorporation of the 
NNF aspect into CF leads to a novel algorithm, termed 
as CFfoaf. 

To validate our approach, we present an extensive 
evaluation, comparing the presented algorithm against the 
one presented in Margaris and Vassilakis (2018a), which 
incorporates the concept of negative neighbours, i.e., users 
with negative correlation between them, in the 
recommendation process, using both the Pearson correlation 
coefficient (PCC) as well as the cosine similarity (CS) as 
similarity metrics (Herlocker et al., 2004). 

It is worth noting that the proposed technique can be 
combined with other algorithms that have been proposed for 
improving rating prediction accuracy, recommendation 
quality or prediction coverage in CF-based systems, 

including clustering techniques (Gong, 2010; Margaris  
et al., 2015) of social network data (Bakshy et al., 2012; 
Margaris et al., 2016, 2017), pruning of old user ratings 
(Margaris and Vassilakis, 2016; 2017) or hybrid filtering 
algorithms (Vozalis et al., 2009). 

The rest of the paper is structured as follows: Section 2 
overviews related work, while Section 3 presents the 
proposed technique. Section 4 reports on the methodology 
for tuning the algorithm operation, while Section 5 
evaluates the proposed technique using seven contemporary 
datasets. Finally, Section 6 concludes the paper and outlines 
future work. 

2 Related work 

While the accuracy of CF-based systems is a topic that has 
attracted considerable research efforts (Yu et al., 2004; Dias 
and Fonseca, 2013; Margaris et al., 2018), research on  
CF-based systems’ coverage is relatively limited. Vozalis et 
al. (2009) present ‘Item HyCov’, a filtering algorithm which 
combines the strengths of two popular CF approaches,  
item-based CF and user-based CF, into a feature 
combination hybrid. ‘Item HyCov’ deals with low 
prediction coverage, a problem especially present in sparse 
datasets; however, it has been tested using only one 
MovieLens dataset (MovieLens, 2018; Harper and Konstan, 
2015), namely the ‘MovieLens 100K’ dataset, whose 
density index (computed as #ratings/#users/#items) is 6.3%, 
being 1.5 to 38 times more dense than other MovieLens 
datasets (MovieLens, 2018), while in relation to 
contemporary datasets, e.g., the Amazon datasets (McAuley 
et al., 2015a, 2015b), its density index is 2-4 orders of 
magnitude higher. Moreover, the ‘Item HyCov’ algorithm 
needs extra storage space and extra preprocessing time for 
the hybrid combination step, as well as continuous updates. 

The work in Poirier et al. (2010) reduces the sparsity of 
the user-item rating matrix by computing virtual ratings 
based on textual user opinions, through the aggregation of 
the sentiments of all of the opinion words in each review. 
Similarly, in Moshfeghi et al. (2011), emotions are extracted 
from textual reviews and are used to determine the 
probability that a user will like an item. Both these 
approaches increase coverage; however they necessitate the 
existence of textual reviews, which are not always available; 
on the contrary, the algorithm presented in this paper does 
not impose this requirement. 

Pham et al. (2011) present a clustering approach to CF 
recommendation technique that instead of using rating data, 
they use social relationship between users to identify their 
neighbourhoods. A complex network clustering technique is 
applied on the social network of users to find the groups of 
similar users and after that, the traditional CF algorithms 
can be used to efficiently generate the recommendations. 
Although this approach improves CF coverage, it is based 
on information sourced from a social network, which is not 
always available. 

Matrix factorisation techniques constitute an alternative 
approach to computing rating predictions for users. As 
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noted in Margaris and Vassilakis (2017), matrix 
factorisation-based techniques always produce a prediction 
for a user’s u rating on an item i, through the formula 
(Koren et al., 2009) 

ˆ T
ui uir q p= ∗  (1) 

where T
iq  captures the relationship between item i and the 

vector of latent factors identified by the matrix 
decomposition process and pu reflects the relationship 
between user u and the latent factors. However, users who 
rate only a small portion of items may not get proper 
recommendations, and items with few ratings may not be 
recommended well (Wen et al., 2014), since predictions 
involving users or items having very few ratings degenerate 
to a dataset-dependent constant value (Margaris and 
Vassilakis, 2017). This is reflected into the rating prediction 
accuracy of the algorithm. To address this issue, Guan et al. 
(2017) have proposed an enhanced SVD model, which 
incorporates the classic matrix factorisation algorithms with 
ratings completion inspired by active learning. In the same 
paper, the multi-layer ESVD is introduced, which learns the 
model iteratively to further improve the prediction accuracy. 

Margaris and Vassilakis (2018a) propose an algorithm 
that incorporates, in the rating prediction computation 
process, users with negative correlation to the user for 
whom the rating prediction is being computed, in order to 
improve coverage in sparse datasets, archiving coverage 
increases ranging 5.1% to 14.8%, with an average of 11.6%, 
while attaining at the same time an average MAE 
improvement of 0.74%. 

The present paper advances the state-of-the-art 
regarding coverage increase in the context of sparse 
datasets, by introducing an algorithm that significantly 
leverages CF coverage, while at the same time reducing CF 
rating prediction errors; this behaviour is proven consistent 
under both correlation metrics and has been validated using 
eight contemporary and widely used datasets. 

3 The proposed algorithm 

In CF, predictions for a user U are computed based on U’s 
NNs, i.e., a set of users that have rated items similarly to U. 
The similarity metric between two users U and V is 
typically based on the PCC, which is expressed as: 
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where k ranges over items that have been rated by both U 
and V, while Ur  and Vr  are the mean values or ratings 
entered by users U and V, respectively. Then, for user U, his 
NN users NNU are selected, out of the users with whom a 
positive similarity has been computed. 

Similarly, the cosine similarity metric is expressed as: 
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As noted in McAuley (2015b), CS between users does not 
perform well when only non-negative ratings are available; 
in this case ratings in the similarity computation process 
must be transformed so that values are negative for ratings 
below the centre of the rating scale and positive for ratings 
above the centre. In this work, we adopt this approach. 

Subsequently, for computing a rating prediction pU,i for 
the rating that user U would assign to item i, the following 
formula is applied: 
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The proposed algorithm introduces the concept of FOAF 
NN (NNF), where two users W and X are designated as 
NNF by virtue of being NNs to a third user Y. More 
specifically, we target the case where users W and X have 
no ratings in common, i.e., ratings(W) ∩ ratings(X) = ∅ 
and for these users there exists a third user Y for which Y ∈ 
NN(W) ∧ Y ∈ NN(X). 

Then, we can consider W and X as NNFs and 
consequently we can assign a similarity metric NNF_sim to 
users W and X, and use this metric in place of the 
(uncomputable due to the lack of common ratings between 
W and X) sim(U, V) metric in formula (4). In this respect, 
we can exploit the ratings of user W in the process of 
computing prediction ratings for user X, and vice versa. In 
this respect, we can effectively broaden the NN set of users 
through the inclusion of NNFs, and this broadening leads in 
turn to the limitation of the ‘grey sheep; phenomenon. The 
rationale behind this approach is based on the transitivity of 
the ‘similar’ relationship, according to which similar(W, Y) 
∧ similar(Y, X) ⇒ similar(W, X). 

For the application of this algorithm, the following 
parameters need to be determined: 

1 Are there any conditions –other than the existence of a 
common near neighbour– that must hold, in order for 
two users X and W to be considered as NNFs? In this 
paper, we consider the following aspects: 
• A similarity threshold Th(sim, src) between users 

W and Y. Under this condition, user W having user 
Y as a NN is considered a NNF with a user  
X ∈ NN(Y) only if sim(W, Y) ≥ Th(sim, src). The 
element ‘src’ in the name of the threshold 
corresponds to the fact that user W is the source of 
the FOAF relationship. 

• A similarity threshold Th(sim, targ) between users 
X and Y. Under this condition, a user W being an 
NN of user Y, is considered a NNF with a user  
X ∈ NN(Y) only if sim(X, Y) ≥ Th(sim, targ). The 
element ‘targ’ in the name of the threshold 
corresponds to the fact that user W is the target of 
the FOAF relationship. 
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Figure 1 illustrates how the source and target 
similarity thresholds are applied in the context of 
FOAF relationship establishment (i.e., 
relationships of type NNF). 

Figure 1 Source and target similarity thresholds in the context of 
FOAF relationship establishment 
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• A similarity threshold Th(sim, endpoints) for the 
similarity between users W and X. Since users W 
and X have no ratings in common, their similarity 
is computed indirectly, as the product of sim(W, Y) 
and sim(X, Y). Under this condition, user W having 
user Y as a NN is considered a NNF with a user  
X ∈ NN(Y) only if sim(X, Y) ∗ sim(X, W) ≥ Th(sim, 
endpoints). 

• A number of common ratings threshold Th(cr, src), 
which corresponds to the minimum number of 
items that W and Y have rated in common. Under 
this condition, user W having user Y as a NN is 
considered a NNF with a user X ∈ NN(Y) only if 
|ratings(W) ∩ ratings(Y)| ≥ Th(cr, src). 

• A number of common ratings threshold Th(cr, 
targ) which corresponds to the minimum number 
of items that X and Y have rated in common. Under 
this condition, user W having user Y as a NN is 
considered a NNF with a user X ∈ NN(Y) only if 
|ratings(X) ∩ ratings(Y)| ≥ Th(cr, targ). 

• A combined threshold regarding the number of 
common ratings threshold Th(cr, comb), pertaining 
to the total number of common ratings that both W 
and X have with Y. Under this condition, user W 
having user Y as a NN is considered a NNF with a 
user X ∈ NN(Y) only if (|ratings(W) ∩ ratings(Y)|  
+ |ratings(X) ∩ ratings(Y)|) ≥ Th(cr, comb). 

These conditions can be applied either individually or 
in conjunctive fashion. Note that if (Th(sim, src) = 
Th(sim, targ) ∧ Th(cr, src) = Th(cr, targ)) then the 
NNF relation is symmetric, i.e., X ∈ NNF(W) ⇔ W ∈ 
NNF(Y). 

2 Which is the optimal method for computing the value 
of NNF_sim? In this paper, we considered the 
following options: 
• NNF_sim(W, X) = sim(W, Y) ∗ sim(Y, X) 
• NNF_sim(W, X) = min(sim(W, Y), sim(Y, X)) 

• NNF_sim(W, X) = max(sim(W, Y), sim(Y, X)) 
• NNF_sim(W, X) = sim(W, Y) 
• NNF_sim(W, X) = sim(Y, X) 
• NNF_sim(W, X) = mean(sim(W, Y), sim(Y, X)). 

Both parameters should be determined in a fashion that: 

a maximises coverage 

b minimises the prediction error. 

In the next section, we investigate these two aspects, in 
order to identify the optimal settings for the algorithm 
parameters. 

4 Tuning algorithm operation 

In this section, we report on the methodology followed to: 

a determine the optimal values for parameters Ths(W), 
Ths(X), Thc(W), Thc(X) and Thc(W, X) 

b determine the optimal computation method for the 
NNF_sim metric. 

The methodology consists of a set of experiments, where 
the relevant aspects varied, in order to gain insight on the 
effect that each parameter setting has on the coverage and 
the quality of prediction ratings (as this is quantified 
through the MAE and RMSE metrics), and also choose the 
optimal setting for each parameter. 

For our experiments we used a machine equipped with six 
Intel Xeon E7 – 4830 @ 2.13 GHz CPUs, 256 GB of RAM 
and one 900 GB HDD with a transfer rate of  
200 MBps, which hosted the datasets and ran the rating 
prediction algorithms. 

In the following paragraphs, we report on our 
experiments regarding eight datasets. Seven of these 
datasets are obtained from Amazon (McAuley et al., 2015a, 
2015b) and one from MovieLens (MovieLens, 2018; Harper 
and Konstan, 2015); the Amazon datasets are relatively 
sparse, while the MovieLens datasets are relatively dense. 
Our research targets mainly on the former type (i.e., sparse 
datasets), however, we include the (more) dense dataset, in 
order to gain insight on the behaviour of the proposed 
algorithm in the context of datasets having higher density 
and verify that it does not deteriorate the coverage and 
accuracy metrics. The eight datasets used in our 
experiments are summarised in Table 1 and have the 
following characteristics: 

• They are up to date (published between 1996 and 2016) 
and are widely used as benchmarking datasets in CF 
research. 

• They vary with respect to the type of dataset item 
domain (video games, movies, music, books, office 
products and grocery and gourmet food) and size (from 
1.4MB to 227MB in text format). 
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Table 1 Datasets summary 

Dataset name #users #ratings #items Avg. 
#ratings/user Density DB size (in 

text format) 

Amazon ‘Videogames’ (McAuley et al., 2015a) 8.1Κ 157K 50Κ 19.6 0.0039% 3.8 ΜΒ 
Amazon ‘CDs and Vinyl’ (McAuley et al., 2015a) 41.2Κ 1.3M 486Κ 31.5 0.0065% 32 ΜΒ 
Amazon ‘Movies and TV’ (McAuley et al., 2015a) 46.4Κ 1.3M 134Κ 29.0 0.0209% 31 ΜΒ 
Amazon ‘Books’ (McAuley et al., 2015a) 295Κ 8.7M 2.33Μ 29.4 0.0001% 227 ΜΒ 
Amazon ‘Digital Music’ (McAuley et al., 2015a) 6.2K 86K 35K 13.9 0.0040% 1.9 MB 
Amazon ‘Office Supplies’ (McAuley et al., 2015a) 3.7K 66K 25K 17.8 0.0714% 1.4 MB 
Amazon ‘Grocery and Gourmet Food’ (McAuley et al., 2015a) 9K 184K 65K 20.4 0.0314% 4.2 MB 
MovieLens ‘Latest 100K – Recommended for education and 
development’ (MovieLens, 2018) 

700 100Κ 9K 143 1.5873% 2.19 MB 

 
In each dataset, users initially having less than 10 ratings 
were dropped, since users with few ratings are known to 
exhibit low accuracy in predictions computed for them 
(Ekstrand et al., 2011). This procedure did not affect the 
MovieLens dataset, because it contains only users that have 
rated 20 items or more. In the following paragraphs, we 
report on our findings regarding the performance of the 
CFfoaf algorithm proposed in this work, versus the negNNs 
algorithm presented in (Margaris and Vassilakis, 2018a). 

To compute the MAE, the RMSE and the algorithm’s 
coverage, we employed a 10-fold evaluation. We opted to 
use 10 folds instead of less ones, in order to maintain the 
number of ratings per user as high as possible, to avoid 
inaccuracies due to limited number of (non-hidden) ratings 
for users. To further validate our results, we also performed 
an evaluation employing the ‘hide one’ technique (Yu et al., 
2004): each time we hid one rating in the database and then 
predicted its value based on the ratings of other non-hidden 
items; this procedure was repeated for all ratings in the 
database. While the absolute magnitudes of the MAE and 
RMSE of the two experiments expectedly differed, since the 
‘hide-one’ technique is known to overestimate accuracy 
(Rao et al., 2008), the relative accuracy improvements 
observed in both experiments (i.e., the ratio 

)accuracy improvement
initial accuracy  were in close agreement, with the 

deviations observed being always less than 1.2%. Taking 
this into account, we present only the findings of the 10-fold 
evaluation. 

4.1 Determining the CFfoaf threshold parameters 

The first experiment is aimed at determining the criteria 
which a user X must fulfill in order to be considered as a 
NNF of user W, besides the fundamental property that a user 
Y must exist for which Y ∈ NN(W) ∧ X ∈ NN(Y). Recall 
from Section 3 that the relevant conditions explored in this 
paper are: 

• sim(W, Y) ≥ Th(sim, src): the similarity sim(W, Y) 
between X and his immediate near neighbour Y must 
surpass the Th(sim, src) threshold. 

 

• sim(X, Y) ≥ Th(sim, targ): the similarity sim(X, Y) 
between W’s immediate near neighbour and the target 
of the FOAF relation must meet or exceed the Th(sim, 
targ) threshold. 

• sim(W, Y) ∗ sim(Y, X) ≥ Th(sim, endpoints): the 
similarity between the endpoints of the FOAF relation, 
i.e., users W and X, indirectly computed as the product 
of the similarities sim(X, Y) and sim(Y, W), must meet 
or exceed the Th(sim, endpoints) threshold. 

• common_ratings(W, Y) ≥ Th(cr, src): the number of 
items that users W and Y have rated in common must 
meet or exceed the Th(cr, src) threshold. 

• common_ratings(X, Y) ≥ Th(cr, targ): the number of 
items that users X and Y have rated in common must 
meet or exceed the Th(cr, targ) threshold. 

• common_ratings(W, Y) + common_ratings(X, Y) ≥ 
Th(cr, comb): the number of items rated in common by 
users W and Y plus the number items rated in common 
by users X and Y must meet or exceed the Th(cr, comb) 
threshold. 

Obviously, it holds that Th(cr, src) ≥ 1 since if W did not 
have any common ratings with Y, then Y could not be a NN 
for W; and similarly, Th(cr, targ) ≥ 1 and Th(cr, comb) ≥ 2. 
Regarding the values of Th(sim, src) and Th(sim, targ) we 
consider only values that are greater than zero, under the 
rationale that it is only meaningful to include NNFs that are 
positively correlated under the employed similarity metric. 

In order to find the optimal setting for the above listed 
conditions, in our first experiment, we examined different 
combination of values for the Th(sim, src), Th(sim, targ), 
Th(sim, endpoints), Th(cr, src), Th(cr, targ) and Th(cr, 
comb). Overall, more than 40 value combinations were 
examined, however, for conciseness purposes, we will 
report only the most indicative ones. For each of them, we 
present the coverage increase and the improvement of rating 
prediction accuracy achieved (measured in terms of the 
MAE and RMSE metrics reduction, as described above). 
These findings are depicted in Figure 2. 
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Table 2 Statistical figures for criteria combination performance 

Coverage increase MAE reduction  RMSE reduction 
Criteria combination 

Rank Average StdDev Rank Average StdDev  Rank Average StdDev 

all = min 1 42.31% 0.1826 1 1.77% 0.0094  1 3.35% 0.0161 
Th(sim, src) = 0.5 2 42.20% 0.1824 2 1.76% 0.0093  2 3.31% 0.0159 
Th(sim, targ) = 0.5 3 42.10% 0.1819 3 1.68% 0.0089  3 3.28% 0.0152 
Th(sim, src) = 0.5 && Th(sim, targ) = 0.5 4 42.08% 0.1816 4 1.65% 0.0086  4 3.25% 0.0155 
Th(cr, src) = 2 6 35.06% 0.1514 5 1.57% 0.0084  5 3.02% 0.0144 
Th(cr, targ) = 2 5 39.14% 0.169 6 1.19% 0.0063  6 2.31% 0.0109 
Th(cr, sim) = 2 && Th(cr, targ) = 2 8 29.96% 0.1294 7 1.03% 0.0055  7 1.85% 0.0094 
Th(cr, comb) = 5 7 34.04% 0.147 8 0.74% 0.004  8 1.50% 0.0068 

 
Furthermore, we ran the same experiment for all the 
datasets listed in Table 1; the results were consistent across 
all datasets, in the sense that the ranking of criteria 
combinations was the same for all datasets, hence in this 
section we only present the mean values of the respective 
metrics for all datasets. Detailed figures for each dataset and 
relevant discussions are presented in Section 5. Table 2 lists 
statistical properties on the behaviour of each of the criteria 
combinations depicted in Figure 2 across all datasets listed 
in Table 1 and under the PCC similarity metric. The 
behaviour under the CS similarity metric follows the same 
pattern. More specifically, for each performance metric 
(coverage increase, MAE reduction and RMSE reduction) 
and for each criteria combination, Table 2 includes the 
following sub-columns: 

• rank, which indicates the relative ranking of the 
specific criteria combination among all criteria 
combinations. The criteria combination achieving the 
biggest performance metric improvement is ranked 
first, and the one attaining the lowest improvement is 
ranked last. Note that the rank is the same across all 
datasets, e.g., the criteria combination ‘all = min’ was 
ranked first regarding coverage increase for each of the 
datasets in Table 1. 

• average, indicating the average performance metric 
improvement achieved while using the specific criteria 
combination across all datasets. 

• stdDev, depicting the standard deviation of the 
performance metric improvement achieved while using 
the specific criteria combination across all datasets. 

Regarding the computation of the NNF_sim(W, X) metric, at 
this phase it was calculated using the formula 

_ ( , ) ( , ) ( , )NNF sim W X sim W Y sim Y X= ∗  (5) 

However, we also validated that the results remain 
consistent with the other NNF_sim computation formulas 
listed in Section 3, by performing the experiment at random 
samples of the search space; in all cases, the results were in 
close agreement with those obtained when using the 
formula in equation (5), in the sense that the ranking of the 
methods’ performance was the same under all NNF 
computation methods. Hence, we will confine ourselves in 

presenting and discussing only the results obtained when 
using the formula in equation (5), which additionally was 
proven to be optimal by our second experiment. 

Figure 2 Coverage increase and prediction error reduction under 
different NNF conditions 
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Figure 2 depicts the coverage increase (bottom half of the 
chart) and the rating prediction error reduction (upper half 
of the chart) under different NNF inclusion criteria, when 
considering the PCC similarity metric. The results for the 
SC similarity metric follow the same pattern. 

We can observe that using the minimum values for all 
thresholds (setting labelled ‘all = min’) leads to the 
maximum increase in coverage (42.31%) and the greatest 
reduction in the MAE (1.77%) and RMSE (3.35%). The fact 
that the RMSE improvement is higher than the 
corresponding MAE reduction indicates that the proposed 
algorithm corrects prediction with high errors, rather than 
predictions with small deviations. The setting where Th(sim, 
src) is set to 0.5 and all other thresholds are set to the 
minimum value follows closely, with a coverage increase 
equal to 42.20%, while the MAE and RMSE improvements 
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are equal to 1.76% and 3.31%, respectively. Two more 
settings lag behind by small margins, namely: 

a the setting where Th(sim, targ) is set to 0.5 and all other 
thresholds are set to their minimum values (coverage 
increase: 42.10%; MAE decrement: 1.68%; RMSE 
improvement: 3.28%) 

b the setting where both similarity thresholds are set to 
0.5 and all other thresholds are set to their minimum 
values (coverage increase: 42.08%; MAE decrement: 
1.65%; RMSE improvement: 3.25%). 

When the values of thresholds related to the minimum 
number of commonly rated items are increased, coverage 
improvement declines; this effect is sharper when the 
increment pertains to the Th(cr, src). 

Considering the above results, in the rest of this paper we 
adopt the setting where all thresholds are set to their 
minimum values. 

4.2 Determining the CFfoaf transitive user similarity 
computation method 

Our second experiment, targets to the method for 
calculating the NNF_sim value in the recommendation 
algorithm. Figure 3 depicts the MAE reduction achieved 
under different NNF_sim computation methods. 

Figure 3 Prediction error reduction under different NNF 
similarity (NNF_sim) computation methods 
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We can observe that the calculation of NNF_sim as the 
product of the two individual similarities is the optimal one, 
achieving a MAE reduction of 1.77% on average across all 
datasets, while the respective RMSE improvement is equal 
to 3.35%; this behaviour is consistent for each individual 
dataset, i.e., the multiplication method is ranked first, 
regarding the MAE and the RMSE reduction achieved, for 
each of the considered datasets. In Figure 3, we can also 
observe that the variations in the reduction of the MAE are 
very small (1.15%–2.25%), while the variations in the 
reduction of the RMSE metric are higher (1.15%–7.15%). 

5 Performance evaluation 

After having determined the optimal parameters for the 
operation of the CFfoaf algorithm (values for the different 
thresholds and method for computing the NNF_sim metric), 
we proceed in evaluating the algorithm’s performance in 
terms of coverage and prediction accuracy. More 
specifically, we measure: 

a coverage, i.e., the percentage of the cases for which a 
personalised prediction can be computed (Burke, 2002) 

b prediction accuracy, i.e., the closeness of the 
algorithms’ predictions to the actual values that are 
known to have been entered by the users. 

For quantifying prediction accuracy, we employed  
two well-established error metrics, namely the mean 
absolute error (MAE), and the root mean squared error 
(RMSE) that ‘punishes’ big mistakes more severely. For 
both aspects, the performance of the plain CF algorithm is 
used as a baseline. 

Besides obtaining absolute metrics regarding 
improvements in coverage and accuracy achieved by the 
CFfoaf algorithm, we compare the performance of CFfoaf with 
the performance of other, state-of-the-art algorithms 
targeting the increase of coverage. In particular we compare 
the proposed algorithm to the negative NNs algorithm 
(negNNs) introduced in Margaris and Vassilakis (2018a), 
which is the most recently published one, does not 
necessitate any additional information (e.g., user 
relationships sourced from social networks), and achieves 
considerable improvements in coverage while maintaining 
(and slightly improving) the quality of rating predictions. 
Note that the comparison with the negative NNs algorithm 
is only performed for the case that the Pearson correlation 
coefficient is used as a similarity metric, because the 
publication introducing the negative NNs algorithm 
(Margaris and Vassilakis, 2018a) does not provide 
information on how the algorithm could be adapted for use 
with the cosine similarity metric. 

In the following, we initially report on the results 
obtained from our experiments on the seven sparse datasets 
listed in Table 1, since the proposed algorithm targets this 
dataset category. The results obtained from the dense 
dataset (MovieLens ‘Latest 100K’) are discussed separately, 
so as to gain insight on the effect of the algorithm mainly on 
the prediction accuracy, since for dense datasets coverage is 
already at high levels. 

For conducting these experiments, we used the machine 
described in Section 4. 

5.1 Experiments using the Pearson correlation 
coefficient as a similarity metric 

Figure 4 depicts the performance metrics regarding the 
increase in coverage when similarity between users is 
measured using the Pearson correlation coefficient. 

 



54 D. Margaris and C. Vassilakis  

We can observe that the proposed algorithm achieves an 
average coverage increase over all datasets equal to 48.08%, 
surpassing the corresponding improvement achieved by the 
negative NNs algorithm (11.87%) by four times. At 
individual dataset level, the performance edge of the CFfoaf 
algorithm against the negative NNs one ranges from 2.78 
times higher for the ‘Amazon Office’ dataset to 7.22 times 
higher, observed for the ‘Amazon Grocery and Gourmet 
Food’ dataset. The lowest increase is observed for the 
‘Amazon Movies and TV’ dataset; interestingly this dataset 
has the highest (#ratings/#items) ratio among the seven 
sparse datasets; while the results in other datasets do not 
concur that there is a direct relationship between the 
coverage increase and the (#ratings/#items) ratio, this is a 
noteworthy element and will be further investigated in the 
context of our future work. 

Figure 4 Coverage increase for the different datasets, when 
using the PCC as a similarity metric 
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Figure 5 MAE reduction for the different datasets, when using 
the PCC as a similarity metric 
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Figure 5 illustrates the performance metrics regarding the 
MAE reduction when similarity between users is measured 
using the Pearson correlation coefficient. 

We can observe that the proposed algorithm achieves an 
average MAE reduction over all datasets equal to 1.83%, 
surpassing by approximately 2.5 times the corresponding 
improvement achieved by the negative NNs algorithm 
(0.77%). At individual dataset level, the performance edge 
of the CFfoaf algorithm against the negative NNs one ranges 
from 2.0 times higher for the ‘Amazon Office’ dataset to 
3.58 times higher, observed for the ‘Amazon Grocery and 
Gourmet Food’ dataset. The lowest MAE improvement for 
the CFfoaf algorithm is observed for the ‘Amazon Movies 
and TV’ and the ‘Amazon Books’ datasets (0.87%), which 
have the highest (#ratings/#items) ratio among the seven 
sparse datasets (9.7 and 3.73, respectively). In this case, the 
results for the other datasets are inline with this observation, 
i.e., when the (#ratings/#items) ratio increases, the achieved 
MAE reduction drops. Further investigation of this aspect is 
again part of our future work. 

Figure 6 demonstrates the performance metrics 
regarding the RMSE reduction when similarity between 
users is measured using the Pearson correlation coefficient. 

Figure 6 RMSE reduction for the different datasets, when using 
the PCC as a similarity metric 
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We can observe that the proposed algorithm achieves an 
average RMSE reduction over all datasets equal to 3.46%, 
surpassing by approximately 4.25 times the corresponding 
improvement achieved by the negative NNs algorithm 
(0.78%). At individual dataset level, the performance edge 
of the CFfoaf algorithm against the negative NNs one ranges 
from 2.29 times higher for the ‘Amazon Books’ dataset to 
19.55 times higher, observed for the ‘Amazon Movies and 
TV dataset’. The lowest RMSE improvement for the CFfoaf 
algorithm is observed for the ‘Amazon Books’ datasets 
(0.86%), while the highest improvement is achieved for the 
‘Amazon Videogames dataset’ (6.53%). The fact that the 
RMSE metric improvement is higher than the corresponding 
MAE improvement indicates that the CFfoaf algorithm 
achieves to correct some prediction errors with high 
absolute magnitudes, since the RMSE metric is known to 
penalise high errors, while the MAE metric takes into 
account all error magnitudes with an equal weight. 
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5.2 Experiments using the cosine similarity metric 

Figure 7 illustrates the performance metrics regarding the 
increase in coverage when similarity is measured using the 
cosine similarity metric. 

Figure 7 Coverage increase for the different datasets, when 
using the CS as a similarity metric 
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We can observe that the proposed algorithm achieves an 
average coverage increase over all datasets equal to 38.57%, 
ranging from 8.28% (observed for the ‘Amazon Movies and 
TV’ dataset) to 78.69% (observed for the ‘Amazon Grocery 
and Gourmet Food’. These performance metrics surpass the 
corresponding improvements achieved by the negative NNs 
algorithm (8.47%) by four times. We can notice that the 
average coverage improvement achieved when the Cosine 
Similarity metric is employed lags behind the corresponding 
improvement obtained when using the Pearson correlation 
coefficient by approximately 10%; this can be attributed to 
the fact that the plain CF cosine-based similarity algorithm 
achieves higher coverage than the corresponding Pearson 
correlation coefficient-based ones (Margaris and Vassilakis, 
2018b), therefore the cosine-based CFfoaf algorithm has 
smaller improvement margins. 

Figure 8 MAE reduction for the different datasets, when using 
the CS as a similarity metric 
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Figure 8 depicts the performance metrics regarding the 
MAE reduction when similarity is measured using the 
cosine similarity metric. 

We can observe that the proposed algorithm achieves an 
average MAE reduction over all datasets equal to 2.62%, 
ranging from 0.47% (for the ‘Amazon Office’ dataset) to 
5.64% (for the ‘Amazon Digital Music’). On average, the 
MAE improvement achieved by the CFfoaf algorithm 
surpasses that of the negative NNs algorithm (1.05%) by 2.5 
times. The average improvement is 1.40 times higher than 
the corresponding improvement obtained when the Pearson 
correlation coefficient is used. 

Figure 9 RMSE reduction for the different datasets, when using 
the CS as a similarity metric 
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Finally, Figure 9 pictures the performance metrics regarding 
the RMSE reduction when similarity between users is 
measured using the Cosine Similarity. 

We can observe that the proposed algorithm achieves an 
average RMSE reduction over all datasets equal to 3.17%, 
ranging from 0.58% (for the ‘Amazon Office’ dataset) to 
5.35% (for the ‘Amazon Digital Music’). On average, the 
RMSE improvement achieved by the CFfoaf algorithm 
surpasses that of the negative NNs algorithm (0.95%) by 3.2 
times. Again, the RMSE reduction is higher than the MAE 
reduction, indicating that the algorithm corrects some errors 
with high absolute magnitudes. In this case, the average 
RMSE improvement obtained when using the two similarity 
metrics (PCC and CS) is almost equal (PCC: 3.40%, CS: 
3.21%). 

5.3 The MovieLens ‘Latest 100K – recommended for 
education and development’ dataset 

In this subsection, we discuss the results obtained from 
applying the CFfoaf algorithm on the MovieLens ‘Latest 
100K’ dataset. The density of this dataset is 1.59%, which is 
considerably higher than the density of the other datasets 
(from 22 to 16.000 times higher), and the coverage achieved 
by the plain CF algorithm is 97.31%, as far as the PCC is  
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concerned, hence the coverage improvement opportunity is 
severely limited. Even in this case, the negNNs algorithm 
increases the coverage by 0.45%, while the CFfoaf algorithm, 
presented in this paper achieves an increment of 1.9%. 

Considering rating prediction quality, when using the 
negNNs algorithm the MAE drops by 0.78%, while the 
RMSE drops by 1.86%; the proposed CFfoaf algorithm 
surpasses all these performance measures, achieving drops 
by 1.38% and 2.57%, respectively. 

Regarding the case where the CS metric is used, the 
coverage of the plain CF algorithm is 95.68%. In this 
context, both the CFfoaf and the negNNs algorithms increase 
coverage by 1.2%. The CFfoaf algorithm achieves to reduce 
the MAE and the RMSE by 0.58% and 0.85%, respectively, 
having thus a performance edge over the negNNs algorithm, 
which leaves MAE intact (no reduction or increment), while 
reducing the RMSE by 0.28%. 

We can observe that even in dense datasets, the 
proposed algorithm offers a small coverage increase and 
additionally achieves a considerable improvement in rating 
prediction quality, surpassing the negNNs algorithm 
proposed in Margaris and Vassilakis (2018a). 

Considering the matrix factorisation-based algorithm 
proposed by Guan et al. (2017) achieves on the same dataset 
an RMSE reduction ranging from 1.43% (basic ESVD 
approach) to 1.52 (four-layer ESVD approach). 
Additionally, two proposed extensions of ESVD proposed 
in the same paper, namely item-wise ESVD (IESVD) and 
user-wise ESVD (UESVD) are applied on subsets of the 
Movielens 1M datasets, achieving RMSE reductions of 
1.78% and 0.97%, respectively. We can observe that the 
improvements achieved by the proposed algorithm under 
the PCC similarity metric surpass those achieved by the 
algorithm proposed by Guan et al. (2017), while under the 
CS similarity metric the situation is reversed. The 
comparison between the proposed algorithm and the one 
proposed by Guan et al. (2017) is limited to their 
performance on the MovieLens ‘Latest 100K – 
Recommended for education and development’ dataset 
because the work in Guan et al. (2017) presents results only 
on the MovieLens and Netflix datasets; notably, the 
improvements achieved by the algorithm proposed in Guan 
et al. (2017) on the MovieLens dataset are superior to those 
achieved by the same algorithm on the Netflix dataset. 

6 Conclusions and future work 

In this paper we have introduced a novel CF algorithm for 
improving prediction coverage in sparse datasets. The 
proposed algorithm has been experimentally verified  
using eight datasets and compared with the negNNs 
algorithm (Margaris and Vassilakis, 2018a), as far as 
prediction accuracy and coverage are concerned. The CFfoaf 
algorithm, presented in this paper, has been found to  
consistently outperform the negNNs algorithm, which is a 
state-of-the-art algorithm targeting increase of coverage, in  
 
 

all tested datasets. The evaluation results have shown that 
for sparse datasets the proposed algorithm provides a 
substantial increase in coverage, ranging from 20.46% to 
88.04%, with an average of 48%, as far as the Pearson 
Correlation Coefficient is concerned, and from 8.32% to 
78.73%, with an average of 38.57%, as far as the Cosine 
Similarity metric is concerned. 

At the same time, the proposed algorithm offers 
considerable improvements regarding rating prediction 
quality; the MAE decreases by 1.83% and the RMSE by 
3.46% on average, as far as the Pearson Correlation 
Coefficient is concerned, and by 2.62% and 3.17%, 
respectively, as far as the cosine similarity metric is 
concerned. 

Furthermore, in the context of dense datasets, the 
proposed algorithm has been found to offer small to 
negligible improvements in coverage and recommendation 
quality. This indicates that the algorithm can be employed 
across all datasets, regardless of their density, hence a CF 
system implementation may employ the proposed 
algorithm, even without examining the properties of the 
used dataset, since using this algorithm will either improve 
the performance of the CF system or – in the worst case – 
have small positive effects on it. 

Our future work will focus on exploring alternative 
techniques for increasing coverage and/or reducing 
recommendation error in sparse CF datasets. Furthermore, 
we are planning to examine these techniques in more 
correlation metrics, such as the Euclidian distance, the 
Manhattan distance and the Spearman coefficient 
(Herlocker et al., 2004); a deeper analysis of the dataset 
factors affecting the algorithm performance will be 
explored. Adaptation of the proposed approaches for use 
with matrix factorisation techniques (Koren et al., 2009) is 
also considered. Finally, the combination of the proposed 
method with other techniques, such as exploiting social 
network data for improving the quality of recommendations 
(Margaris et al., 2017) will be investigated. 
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