
Int. J. Big Data Intelligence, Vol. 7, No. 1, 2020 15

Copyright © 2020 Inderscience Enterprises Ltd.

Uncovering data stream behaviour of automated
analytical tasks in edge computing

Lilian Hernandez* and Monica Wachowicz
University of New Brunswick,
Fredericton, NB, Canada
Email: lhernand@unb.ca
Email: lilianhrg@gmail.com
Email: monicaw@unb.ca
*Corresponding author

Robert Barton
Cisco Canada,
Vancouver, Canada
Email: robbarto@cisco.com

Marc Breissinger
Cisco USA,
Washington, DC, USA
Email: mbreissi@cisco.com

Abstract: Massive volumes of data streams are expected to be generated by the internet of things
(IoT). Due to their dispersed and mobile nature, they need to be processed using automated
analytical tasks. The research challenge is to uncover whether the data streams, which are being
generated by billions of IoT devices, actually conform to a data flow that is required to perform
streaming analytics. In this paper, we propose process discovery and conformance checking
techniques of process mining in order to expose the flow dependency of IoT data streams
between automated analytical tasks running at the edge of a network. Towards this end, we have
developed a Petri Net model to ensure the optimal execution of analytical tasks by finding path
deviations, bottlenecks, and parallelism. A real-world scenario in smart transit is used to evaluate
the full advantage of our proposed model. Uncovering the actual behaviour of data flows from
IoT devices to edge nodes has allowed us to detect discrepancies that have a negative impact on
the performance of automated analytical tasks.

Keywords: streaming analytics; process mining; Petri Net; smart transit; internet of things; IoT;
edge computing.

Reference to this paper should be made as follows: Hernandez, L., Wachowicz, M., Barton, R.
and Breissinger, M. (2020) ‘Uncovering data stream behaviour of automated analytical tasks in
edge computing’, Int. J. Big Data Intelligence, Vol. 7, No. 1, pp.15–28.

Biographical notes: Lilian Hernandez is a Post-Doctorate at the People in Motion Lab. Her
research interests include big data analytics, process mining and the internet of things.

Monica Wachowicz is a Full Professor at the University of New Brunswick and the Director of
the People in Motion Lab. She works at the intersection of streaming analytics for analysing
massive IoT data in search of valuable information in real-time; and automated analytical
frameworks for a world in which ‘intelligence’ will be embedded in virtually everything around
us.

Robert Barton graduated from the University of British Columbia with a degree in Engineering
Physics, and is a registered professional engineer. He holds dual CCIEs in Routing and Switching
and Security, and was also the first CCDE in Canada. Currently, he is working on SmartGrid
network technologies, including smart meter and intelligent substation design.

Marc Breissinger graduated from Yale University and he is currently the Executive Vice
President of the Cisco Information Server. The group offers data federation, warehouse
extensions, virtualisation layers, cloud data, integration, and composite monitors, as well as
offers consulting, education, and training services.

16 L. Hernandez et al.

1 Introduction

Streaming analytics is a process that consists of
well-defined automated tasks designed to retrieve, manage
and analyse data streams that are generated by a large
number of IoT devices. These devices operate as providers
and consumers of data related to a specific application,
usually supporting point-to-point communications that are
happening in real-time. They are a global network of
sensors, actuators, smartphones, vehicles, appliances,
wearables, and any other type of device that is converted
into a ‘connected thing’ for unlocking new services that can
be applied in smart transit (Mastroianni et al., 2017; Cao
and Wachowicz, 2018; Hernandez et al., 2019; Tang et al.,
2015), smart homes (Zhang et al., 2012; Zheng et al., 2012),
manufacturing industries (Garrido-Hidalgo et al., 2017;
Fernández-Caramés and Fraga-Lamas; McNeil, 2018),
farming (Jeon et al., 2018; Ruengittinun et al., 2017), utility
mining (Lee and Kim, 2015; Gcaba and Dlodlo, 2016;
Ramesh et al., 2017), oil and gas plants (Sharma et al.,
2017; Badalotti et al., 2018), to mention a few.

The analytical tasks are usually required to be
automated for handling the fast data flow generated from
moving data streams from IoT devices to edge nodes and
later to a cloud platform. These tasks are also dependent on
one another for receiving the data streams from IoT devices
as an input which in turn will produce new information as
part of its output. In particular, the dependencies among
tasks are considered dynamic because they are executed as
soon as the data streams arrive according to an event time
window. Previous research work has been focused on
scalability and communication issues due to the
heterogeneity of technologies and the pitfalls in moving
data streams from the IoT devices directly to a cloud
platform (Atzori et al., 2010; Xie et al., 2013; Tolosana-
Calasanz et al., 2014; Bendoukha et al., 2013). In contrast,
very little is known about the actual behaviour of the data
streams when executing automated analytical tasks at the
edge nodes of a network. The rationale of edge computing is
that automated analytical tasks should be performed closer
to IoT devices in order to reduce network latency and the
risk of infringing privacy rights.

Process mining (PM) techniques provide a unique
prospect to compare the expected behaviour against the
actual behaviour of IoT data streams across automated tasks
(van der Aalst, 2011). Automated analytical tasks are
essentially modelled as a process discovery which is based
on modelling the expected tasks and observing their actual
behaviour that emerges from executing them. Diagnosing
discrepancies such as path deviations can help us unfolding
path deviations caused by the data streams that have
followed different paths to those expected to occur (i.e.,
conformance checking). Bottlenecks can also impact the
speed in which the data streams flow, causing that the tasks
involved in the bottleneck to experience higher processing
time than expected, and as a result, triggering a delay in
their execution.

Traditional PM techniques have been previously used to
model task behaviour, but they failed to consider the

association between a data flow and the execution of a task
that depends on this dataflow (Adam et al., 1998). It is of
paramount importance to model the expected behaviour of
IoT data streams during the execution of automated
analytical tasks in edge computing. Logical specifications
are needed to reflect what actually happens to the IoT data
streams arriving at a large number of edge nodes. PM
techniques are promising to model the behaviour of IoT data
streams by extracting knowledge from event logs available
for a real-world scenario (van der Aalst, 2011;
van der Aalst, 2014). Based on an event log, a process
model can be constructed for capturing the behaviour that
emerges from this log.

Previous research work has proposed a variety of PM
models such as marked graphs (MG) (Reisig, 2013), signal
transition graphs (STG) (Workcraft.org, https://workcraft.
org/tutorial/modelling/stg/start), Petri-nets (PN) (Adam
et al., 1998), temporal constrain Petri Nets (TCPN)
(Gonzalez del Foyo and Silva, 2008), predicated Petri Nets
(PPN) (Adam et al., 1998), and matrix vector transition net
(MVTN) (Spiteri Staines, 2016). In this research paper, we
propose to develop a PN model for analysing IoT data
streams during the process of performing automated tasks at
an edge node. A PN model was selected mainly because an
MG model is a restricted graph approach that does not allow
any modelling choices or data stream variations at all. It is
only recommended in cases whose transitions are very
simple. Although an STG model can be considered as
similar to a PN model, it has a major limitation since STG
models usually omit transitions boxes and divides tasks into
inputs, outputs, and internal. Other examples such as the
TCPN, PPN and MVTN models also follow the PN
principles but then again, they have modelling constraints
on temporal behaviour and abstract data types that hamper
their use to capture the relationships among automated tasks
running at an edge node.

APN model is a bipartite directed graph which provides
a generic approach that should be sufficient to represent any
process discovery of billions of IoT data flows and perform
conformance checking of automated tasks running at
different edge nodes. In particular, a PN model with data
(DPN) offers a logical specification that can provide a basis
for accurate conformance checking that can enable us to
foster higher confidence levels in the correctness of the
execution of the tasks. This is vital for streaming analytics
because it will allow us to diagnose if there is a change
between the observed behaviour recorded in an event log
and the planned behaviour of the algorithm developed to
perform an automated task. Moreover, a DPN model has the
advantage of monitoring the flow dependency of the IoT
data streams between tasks and their temporal relationships
since the event logs can be generated on the fly.

Our research challenge consists of processing a vast
volume of data streams continuously coming at high
velocity from a large number of IoT devices, but also
making sure that the behaviour of these data streams
conform to the constraints of automated tasks. Towards this
challenge, our scientific contributions are as follows:

 Uncovering data stream behaviour of automated analytical tasks in edge computing 17

• Our research work is a first step towards understanding
the actual behaviour of IoT data streams and its impact
on the performance of automated tasks running at edge
nodes. PM techniques have a potential to help us to
identify inconsistent discrepancies in IoT data stream
such as path deviations, bottlenecks, and parallelism.

• Our proposed DPN model outlines the importance of
control-flow alignment for IoT data streams. Previous
research work on DPN models has been focused on the
task itself to which an event log refers to, overlooking
the actual data flow taking place to execute this task, in
particular with automated tasks in edge computing.

• A smart transit scenario is used to validate a new
application for DPN models. Smart transit in the cities
is expected to generate billions of IoT data streams. Our
DPN model provides a unique approach to verify the
execution of automated analytical tasks. To the best of
our knowledge, DPN models have not been applied in
the context of IoT and a smart transit scenario before.

This paper is organised as follows: Section 2 introduces the
preliminary concepts related to PN models, event logs,
alignments, and streaming analytics. The related work is
discussed in Section 3, and Section 4 introduces our real-
world scenario where IoT data streams are generated by a
smart transit system. Section 5 explains our proposedDPN
model and Section 6 describes its process mining discovery.
Section 7 contains a description of the implementation steps
and obtained results. Finally, Section 8 concludes this
research, and shares our future research work.

2 Preliminaries

This section introduces basic concepts related to Petri Nets
previously defined in van der Aalst (2011), Leoni and van
der Aalst (2013), Adriansyah et al., 2011; Prabhakara et al.,
2010) that are relevant for streaming analytics (Xie et al.,
2013; van der Aalst, 2011; Adriansyah et al., 2011; Al
Ridhawi et al., 2017).

Definition 1: Petri Net

A PN is a tuple (P, T, F, m0) where P is a finite set of
places; T is a finite set of transitions; F is a flow relation
where F ⊆ (P × T) ∪ (T × P), and m0 is an initial marking
representing the initial distribution of tokens (Leoni and van
der Aalst, 2013). One place may contain tokens that flow to
other places by executing a transition (i.e., an action).
Figure 1 provides a representation of a PN and the flow
relations between places.

We state that a transition T1 is enabled in m1 at place P1
and that its firing produces the successor marking m2 at
place P2 and m3 at place P3. Following the flow relations, the
transition T2 is enabled in m2 and m3, and its firing produces
the successor m4 and m3. Meanwhile transitions consume
and produce tokens, places represent the resources that are
needed to be available before a transition is triggered as

well as states that need to be met before a transition can be
carried out.

Figure 1 An example of a Petri Net diagram (created in 1939)
(see online version for colours)

Definition 2: Petri Net with data

A data Petri Net (DPN) is a PN in which tokens carry data.
It can handle data variables, allocate resources, define time
constraints and perform read/write actions.

A DPN is a tuple DPN = (P, T, F, V, U, R, W, G) where
P is a finite set of places; T is a finite set of transitions; F is
a flow relation where F ⊆ (P × T) ∪ (T × P), V is a finite set
of variables; U is a function that defines the values
admissible for each variable v ∈ V, R is a function R ∈ T
→ 2 V that labels each transition with the set of variables
that it must read; W is a function W ∈ T → 2 V that labels
each transition with the set of variables that it must write;
and a data dependent guard G ∈ T → GV that verifies
whether all the input places are marked before a transition is
triggered. A guard can be any Boolean expression over V
using logical operators such as conjunction (∧), disjunction
(∨), and negation (¬).

Definition 3: IoT data streams

IoT data streams are unbounded set of tuples that are
transported as discrete data packages of varying sizes at
periodic intervals of time (i.e., event time windows). Each
tuple may contain several attributes T1 = (S1, x1, y1, t1)
where S1 is a fixed number of measurements generated by
an IoT device, and (x1, y1) is the geographical location of an
IoT device at the time t1 which is when the measurements
were generated.

Definition 5: streaming analytics

Streaming analytics is a network of automated tasks t1; t2,
…, tn, that are related to each other based on their order of
execution. Each task consists of a set of actions that belong
to an algorithm used to execute such a task. Tuples flow
from one task to another, and different tasks require a
variety of computational resources that will determine their
processing time. In this paper, we introduce streaming
analytics as a DPN model that is a generic-model used for
modelling, ordering, and analysing the behaviour of IoT

18 L. Hernandez et al.

data streams during the execution of automated tasks at
edge nodes.

In our DPN model, the bi-partite graph consists of:

• Place nodes that are the required state of a tuple and the
computational resources which are needed to trigger a
transition.

• Transition nodes represent an action that is needed in
order to execute an automated task. Multiple transitions
can refer to the same automated task or different
automated tasks.

• A flow relation is the continuously transport of tuples
(i.e., tokens) from one transition to another at periodic
intervals of time. Event time windows are created since
tuples may arrive out-of-order of their timestamp.

• Tokens are the tuples (i.e., IoT data streams).

• Variables are the attributes of a tuple that was
generated by an IoT device.

• Initial Marking is continuously being updated since the
number of tuples inside an event window may vary.

• Final Marking is unknown. It will usually be defined
when an IoT device stops sending data to an edge node.

Definition 6: process discovery

It is a learning process that relates a modelled behaviour of
a Petri Net and an observed behaviour recorded on an event
log L. The events in the event log L must be related to
transitions in the model and can be represented by a pair (a,
φ) consisting of an action to execute an automated task and
a value assignment φ associated with cases (i.e., process
instances).

Definition 7: data-aware conformance checking

It is the process of diagnosing and quantifying discrepancies
between modelled behaviour and observed behaviour. It
requires an alignment of an event log L and the DPN model
in such a way each single trace σ ∈ L and the DPN model.
This means that conformance checking seeks to match the
cases inside an event log with the planned behaviour of the
automated tasks of the DPN model. A DPN is aligned if
every trace in the event log can be mirrored somehow by the
model.

3 Related work

Previous research work has already shown the important
role of applying PM techniques for discovering behaviour
patterns with the aim of improving the way to process data
(Mastroianni et al., 2017; Zhang et al., 2012; Zheng et al.,
2012; Xie et al., 2013; Tolosana-Calasanz et al., 2014;
Bendoukha et al., 2013; Leoni and van der Aalst, 2013;
Adriansyah et al., 2011; Al Ridhawi et al., 2017;
van der Aalst et al., 2013; Jagadeesh et al., 2013;

Kapitanova et al., 2011; Petri et al., 2017; Caesarita et al.,
2017; Pulsanong et al., 2017; Appice and Malerba, 2016). In
particular, Leoni and van der Aalst (2013) were pioneering
in presenting a data-aware process discovery technique for
applying a DPN model using real-life event logs obtained
from hospitals and mobile phone carriers. In their research,
they point out the importance of using real-world event logs
to discover data-flow patterns that can be applied to
improve the way to analyse process behaviours. Process
cubes have also been proposed for modelling a set of events
as individual cells of a process cube structure (van der Aalst
et al., 2013). A multidimensional PM is developed based on
online analytical processing (OLAP) queries which are
defined according to different dimensions of events. The
WABO1 event log containing 20 dimensions that is publicly
available was used to illustrate the temporal distribution of
events (Lohmann et al., 2013).

Regarding the data quality contained into the event logs,
Adriansyah et al. (2011) proposes a conformance checking
approach that deals with identifying unobservable actions in
event logs that might lead to false-negative patterns in data
management systems. Jagadeesh et al. (2013) provides a
summary which identifies ten categories of data quality
issues in PM including event granularity, case
heterogeneity, voluminous data, timestamp issues, missing
data, ambiguity between events, process flexibility, noisy
data, mashed process, and scoping. More research is needed
to address data quality issues in event logs, in particular
with IoT data which is usually noisy and incomplete,
making it more challenging to generate reliable event logs.

From a data streaming perspective, Kapitanova et al.
(2011) proposed the MEDAL formal specification language
based on combining features from stochastic, timed, and
coloured PNs, to model and analyse stream queries in terms
of workload and query cost. Using simulated event logs, a
snapshot of the data streams is created for each query
statement, even when there are new data streams arriving in
the system. The simulation results are obtained from the PN
simulator Yasper (van Hee et al., 2006).

From a PM perspective, Al Ridhawi et al. (2017) use PN
models to generate event logs containing actions needed for
mobile edge node cooperation, compare them, and find the
one that produces the minimal cost in terms of latency and
path stability. Bioinformatics analytics based on PN models
has also been proposed in the literature to show the trade-off
between the cost of storing intermediate data and the
computing costs incurred in regenerating this data using
cloud resources (Xie et al., 2013). They are also used as
modelling methods for understanding the dynamic resource
allocation in the cloud with the target of assuring quality of
service and throughput (Tolosana-Calasanz et al., 2014).

Control-flow analysis in the cloud has been
explored to coordinate actions of a group of distributed
resources within a cloud infrastructure. Bendoukha et al.
(2013) explores a PN model for modelling resource sharing
for edge computing applications. Petri et al. (2017) describe
potential PN models for micro data centres to be
deployed at edge nodes. The tested scenarios are healthcare,

 Uncovering data stream behaviour of automated analytical tasks in edge computing 19

vehicle-to-vehicle (V2V), and vehicle-to-interface (V2I)
communications.

Few attempts could be found on applying DPN models
on streaming analytics. And there is even fewer attempts to
integrate DPN models and IoT in general. Mastroianni
et al. (2017) apply a DPN model to a simulated event log
generated from a simulated set of IoT devices being carried
out by pedestrians or deployed in vehicles moving on a
smart street. The PM is designed to improve our
understanding on how to tackle scalability and network
issues considering to important features of the IoT devices,
such as mobility and geo-distribution aspects. Their
resulting patterns are showing the trade-off between
scalability and latency to improve Quality of Services. No
attention was given to the impact of data flows on the
performance of automated analytical tasks.

Regarding to specialised tool kits that support PM
approaches, Caesarita et al. (2017) utilise the alpha and
heuristic miner algorithms to identify bottlenecks and frauds
of business processes. The authors take full advantage of
ProM6 (Verbbek et al., 2012), that is as a PM tool kit, to
compare the modelling performance among several types of
mine algorithms. Complementary, the inductive miner
algorithm (Pulsanong et al., 2017) is used to find out the
most optimised path, in which the implementations are done
over Disco Fluxicon Co. (van der Aalst, 2011) tool kit.
These previous research works validate the potential of PM
tools for analysing real-world event logs generated by
healthcare and online business applications.

Finally, Appice and Malerba (2016) propose a multiple
view clustering solution to reduce/clean spaghetti-like PM
models. This approach aims to unveil the problems that
arise when an event log is examined under several
perspectives, such as the control-flow perspective (ordering
of actions), the organisational perspective (organisation of
resources), the trace perspective (frequency of actions), and
the performance perspective (time processing).

4 The smart transit scenario

In our smart transit scenario, every vehicle of a transit
network is equipped with an IoT device which sends one
tuple every five seconds to an edge node installed inside a
bus (Figure 2). Event time windows are used in order to
create more accurate event logs, even if the tuples arrive
out-of-order of their timestamp.

In edge computing, automated tasks are performed near
IoT devices. The main reason is to take the advantage of
edge nodes as distributed resources in charge of carrying out
many automated tasks. In our smart transit scenario, four
automated tasks have been selected: data ingestion, data
cleaning, data contextualisation, and data aggregation.

The data streams that reach an edge node are unbounded
tuples having 17 attributes containing information as shown
in Table 1. Once the tuples arrive at the edge node, the

automated analytical tasks are triggered without human
intervention. This has been achieved by developing
algorithms for each analytical task (i.e., data ingestion, data
cleaning, data contextualisation, and data aggregation). The
edge nodes have no control over the order in which a tuple
arrives within an event time window.

Figure 2 Overview of our smart transit scenario

One expected stream behaviour in our smart transit scenario
is when a single input tuple is processed by one task, and
after the execution of this task, an updated output tuple is
generated. The tasks that present this type of stream
behaviour include the data ingestion task which consists of
flowing all the raw tuples from the IoT devices to an edge
node. The tuples being generated by the IoT devices of the
transit system might use different event time windows,
having time granularities of each minute, hour, week, or
month depending on the mobility context. All the tuples that
arrive at an edge node are kept in memory.

Another task that presents this linear behaviour is the
data cleaning task which is triggered as soon as the raw
tuples arrive at an edge node, and it aims to remove errors
and inconsistencies. Ensuring data quality for a high volume
of tuples is a nontrivial step since IoT devices usually
produce noisy data. Once the data cleaning task is finished,
many tuples might have been deleted and as a result, only
the cleaned tuples will be ready to flow to the data
contextualisation task.

The data contextualisation task aims to perform
semantic enrichment by adding new attributes to each
cleaned tuple accordingly to a bus trip. Two new attributes
(i.e., move and stop) are added to the original tuples to give
information about if a vehicle is moving or not moving
during a particular trip. The moves and stops are computed
using the distance between two consecutive locations of a
moving bus along a trip. We consider that if the distance
between two consecutive locations is larger than 15m, the
bus is moving (i.e., move), otherwise the bus is not moving
(i.e., stop) (Cao and Wachowicz, 2018).

20 L. Hernandez et al.

Table 1 Transit feed of the smart transit scenario

ID Attribute name Description
1 vlr_id The ID of the data point in the vehicle location report table.
2 route_id_vlr The route ID in the vehicle location report table.
3 route_name The name of the route.
4 route_id_rta The route ID in the route in the route transit authority table.
5 route_nickname The abbreviation of the route.
6 trip_id_br The trip Id in the route table.
7 transit_authority_service_time_id Transit authority service time ID.
8 trip_id_tta Transit authority trip ID.
9 trip_start Start time of the trip.
10 trip_finish Finish time of the trip.
11 vehicle_id_vab Vehicle ID.
12 vehicle_id_vlr Vehicle ID in the vehicle location report table.
13 vehicle_id_vlr_ta Descriptive name of the bus.
14 bdescription Bus description.
15 lat Latitude.
16 lng Longitude.
17 timestamp Timestamp of the data point.

Table 2 The transitions in our DPN model

Transition Actions Automated task Tuple state

A Receiving tuples Data ingestion Raw
B Normalising tuples
C Eliminating tuples

Data cleaning Cleaned

D Grouping tuples
E Sorting tuples
F Computing moves/stops

Data contextualisation Contextualised

G Computing total number of stops per trip
H Computing total number of moves per trip
I Computing actual duration of trips

Data aggregation Aggregated

Another stream behaviour found in our smart transit
scenario is when a set of ordered tuples are processed by a
task at once, and as a result, a single new tuple is generated.
One example includes the data aggregation task. This task
can offer information that may have a wide impact on the
observed behaviour by summarising particular patterns that
can generate global mobility patterns of the entire transit
network. For instance, the data aggregation task consists of
summarising the information contained in all tuples that
belong to the same trip. The move/stop information can be
used to identify the behaviour of the trips (i.e., group of
tuples), instead of the behaviour of a single tuple. It can also
provide new insights about which bus stops are most used
and which others are not. Finally, the data aggregation task
can also provide information about the total trip duration
considering the real stream behaviour of the transit system

as a whole system. Once the automated taskswere
performed at the edge nodes, the historical outputs are sent
to a cloud platform. This prevents semantically incorrect
results in case of backpressure or delays due to failure
recovery.

5 The proposed DPN model

Our DPN model is a bipartite graph consisting of two sets of
nodes: places and transitions. The flow relation between the
nodes are defined from a place to a transition or from a
transition to a place. Table 2 summarises the transitions that
have been used to model the expected data stream
behaviour.

 Uncovering data stream behaviour of automated analytical tasks in edge computing 21

Figure 3 Overview of our DPN model for the smart transit scenario (see online version for colours)

Figure 3 illustrates our DPN model using a workflow net for
our smart transit scenario. The transitions (squared nodes)
consist of a sequence of actions that should occur when an
automated task is being executed by running an algorithm.
Transitions also represent the changes that occur when
tuples flow from one automated task to another. In our
model, tuples being generated by IoT devices have four
different states ranging from raw state, and cleaned state to
a contextualised state and aggregated state. Places (circle
nodes) are used to represent the resources available at the
edge nodes. In our model, the resources are the algorithms
developed for the execution of the tasks. They consist of
Python scripts, which are automatically running in an edge
node. The sequence of places and transitions is based on the
occurrence order among the events in which the actions are
triggered any time a tuple arrives in order to execute an
automated task. Once an edge node has received a tuple, the
transition A: receiving tuples is triggered, and it will run
continuously until all tuples of an event time window are
processed. The same will happen to all other transitions B:
normalising tuples; C: eliminating tuples; D: grouping
tuples, E: sorting tuples, and F: computing moves/stops.
These transitions are again triggered when a new set of
tuples arrived at a place belonging to a consecutive event
time window. In contrast, the transitions G: computing total
number of stops per trip, H: computing total number of
moves per trip, and finally I: computing actual duration of
trips require that their place nodes make sure that all tuples
pertaining to a bus trip have been contextualised (i.e.,
contextualised state) before any transition is triggered.

The proposed DPN model is based on the following
modelling constraints:

• A tuple is a high-quality tuple if it assures two
requirements. The first requirement is accomplished if a
tuple has successfully followed the path (i.e., trace) that
was envisaged for every transition. The second
requirement is fulfilled if the attribute values within the
tuples are complete and are not missing. Otherwise a
tuple is considered as an anomaly.

• A trip is a good trip if 80% the tuples belonging to the
same trip successfully follow the stream data flow of all
transitions. Otherwise, a trip is considered as an
anomaly.

• A route is a good route if 80% of the tuples belonging
to the same route has successfully followed the stream
data flow of all transitions. Otherwise, a route is
considered an anomaly.

In our Smart Transit Scenario, a good trip and a good route
also indicate that their tuples provide reliable and complete
information about such a trip and route. This plays an
important role in the quality assurance of the outputs of the
automated tasks.

Our DPN model is a generic model that can allow us to
capture the stream behaviour of the traces in the event log,
from the time a tuple arrives at a transition running at an
edge node until the tuples are ready to be sent to the cloud.
It can also allow us to capture billions of traces that might
not been expected. Finally, process mining can help us to
match the transitions and places, the data contained in them,
and the patterns built by modelling the sequence of
transitions within an automated task. Therefore, the PM
approach is discussed in detail in next section.

6 How IoT data streams are actually flowing
between automated tasks?

Our main goal is to extract patterns about path deviations,
detect the presence of bottlenecks, point out process
constrains, and find out whether the flow has had an impact
on the performance of the tasks. Each raw tuple is modelled
as a case in the event log. The updated and new tuples are
also modelled as a case that took place according to the
different tuple states as previously described in Table 2.
Each case within the event log refers to a transition
triggered to perform an automated task, and it is related to a
specific trip that occurs at a particular timestamp. The cases
belonging to the same trip are seen as one trace. And finally,

22 L. Hernandez et al.

each trace describes the life-cycle of a specific trip in terms
of the executed automated tasks.

Figure 4 Process mining overview (see online version
for colours)

In our DPN model, the execution of automated tasks is
known as a control-flow. The PM technique being used here
was first proposed by Leoni and van der Aalst (2013), and it
consists of four steps. Figure 4 illustrates the four steps that
can be described as one of the following:

Step 1 Create an event log.

Step 2 Compute the control-flow of the discovered DPN.

Step 3 Combine the control-flow model from the previous
step and the event log.

Step 4 Verify whether the DPN is an accurate
representation of the control-flow, according to the
real behaviours observed in the event log.

The event log creation (step 1) refers to creating a CSV file
formatted as a common table. Every row in the table
represents a case within the event log, whereas the columns
are the variables that describe these cases; such as tuple
identification number, action name, timestamp, resource,
and others. Among the all the variables, only three of them
are mandatory for the process mining. These are the tuple
identification number, the transition name, and the
timestamp columns. The tuple identification number is a
unique number that every tuple receives (i.e., case id). It is
used to make reference to a specific tuple while it is flowing
through the different automated tasks. The transition name
has information about the actual action taken to execute a
particular transition (i.e., receiving tuples, eliminating
tuples, normalising tuples, etc.). Finally, the timestamp sets
the date and time in which the transitions take place. The
computation of the control-flow (step 2) consists of making
use of available algorithms, such as alpha algorithm, to
draw a visual version of the observed stream behaviour
within the event log.

Step 3 combines the control-flow model obtained in
Step 2 with the original event log. Four quality dimensions
are used for comparing the model and the event log.
These dimensions are fitness, simplicity, precision and
generalisation (van der Aalst, 2011). Fitness means the level
of freedom that the model allows for representing most of
the behaviour seen in the event log (van der Aalst, 2011;

van der Aalst, 2014). Simplicity refers to the level of
complexity infer from the model built. The precision and
generalisation dimensions are other important aspects of
process mining because they provide information about how
a model is over fitting the data (i.e., extremely general) or
underfitting the data (i.e., extremely precise). Finally, step 4
applies the conformance checking approach that is available
as a plug-in of ProM6 (Verbbek et al., 2012). The
implementation for the smart transit scenario is explained in
detail in the following section.

7 Implementation and discussion of results

The IoT data streams were real-time transit feeds of route
51 provided by the CODIAC Transit System of the City of
Moncton, New Brunswick. An edge node was deployed
inside three bus vehicles of the route 51. The edge nodes
were IR829GW edge nodes which belong to the Cisco 829
series and they were selected because they can support a
wide variety of applications including fleet management,
mass transit, and remote asset monitoring. They also offer
five main advantages as described as one the following
(Data Sheet: Cisco 809 Industrial Integrated Services
Routers, 2017):

• compact form and size

• multimode compatibility with diverse WAN
technologies

• high scalability implementation

• resistance to humidity as well as a wide temperature
range (–40°C to +60°C and type-tested at +85°C for 16
hours)

• routers are shock and vibration resistant

• edge computing capabilities, where computing tools
can be installed as micro services.

This edge node handles all routing, switching and
networking traffic using IOx operating system running on a
virtual machine that uses Linux Yocto. The IoT data
streams are fetched using the Gateway Management Module
(GMM) and Data Control Module (DCM) which are the
main modules of the Cisco Kinetic platform. This platform
is a scalable, open system, adaptable for a variety of IoT
applications that is used to extract, compute, and move the
IoT data streams (Figure 5).

The transit feeds were transported from the devices to
the edge nodes using the available 3G network. The four
automated tasks were running using a script code written in
Python version 2.7.14 at the edge node due to its available
light libraries and high-level general-purpose programming
(Cao and Wachowicz, 2018). The automated tasks have
generated five outputs as CSV files. These tasks consist of
nine transitions ranging from A: receiving tuples to I:
computing the observed duration of the trip. See Table 2 for
an overview of the transitions.

 Uncovering data stream behaviour of automated analytical tasks in edge computing 23

Figure 5 Edge node architecture (see online version for colours)

For creating an event log of the observed stream behaviour
that belongs to the data ingestion, data cleaning, and data
contextualisation tasks (i.e., A: receiving tuples, B:
eliminating tuples, C: normalising tuples, D: grouping
tuples, E: sorting tuples, and F: computing move/stops), we
have combined the content of the first three CSV output
files. The remaining CSV output files were merged to build
another event log of the observed stream behaviour that
belongs to the aggregation task (i.e., G: computing total
number of stops per trip, H: computing total number of
moves per trip, and I: computing the observed duration of
the trip). The first event log file size exceeded 1 million
cases, and the second log file size was in the range of
150,000 cases.

It is important to point out that since the IoT data
streams have tuples with 17 variables, only three main
variables have been standardised for the process mining
(Figure 6). They are Case ID, transition name, and time for
the event logs. In our DPN model, the Case ID is the Tuple
ID. Depending on the granularity, and/or the context level
we want to analyse, the Case ID may be exchanged by the
Route ID or the Trip ID attribute. The action name is
represented by variables that describe the analytical task
being performed. The time column is the timestamp.

We have used ProM6 (Verbbek et al., 2012) and Disco
Fluxicon Co. (Rozinat, 2018) for the implementation. The
ProM6 toolkit is a generic open-source framework with a
high scalability. It has processing capabilities that allows us
to work with event log files containing more than one
million cases, assuring a processing time of milliseconds.
Disco Fluxicon Co does not have restrictions of file sizes
neither. It allows files with more than one million cases.
However, some limitations of these tools are related to the
available plug-ins (i.e., algorithms for modelling the event
log files), the restrictions to configure them, and the type of
output they delivered (Verbeek, 2012; Verbeek et al., 2012).
For example, the file format required by the ProM6 and
Disco Fluxicon Co tools is not the CSV data format. The
Disco Fluxicon Co outputs, with a xes.gz file format,
represent the ProM6 inputs that are necessary to start with
the process mining performed by ProM6. Therefore, some
additional steps have been performed to generate the event
logs having the appropriate format. These steps were carried
out manually, therefore we cannot assure that the event log
does not contain human errors which can have a negative
impact on the accuracy of observed behaviours. More
research is needed to study how errors can be detected in
event logs. Figure 7 illustrates the observed behaviour
patterns that belong to the data ingestion, data cleaning, and
data contextualisation tasks. It reveals the occurrence of a
path deviation during the data flow between the data
ingestion and data cleaning tasks. In fact, the expected
behaviour was that all cases after being normalised would
have been grouped according to their respective routes.
However, there were 22,329 cases that have been directly
flown from the transition C: normalising tuples to the
ending marking point of our DPN model, and after sent to
the cloud without being contextualised and aggregated. This
path deviation could have happened, either by unknown
conditions in the algorithm. Further an in-depth analysis is
required to determine the main reasons behind this observed
stream behaviour.

Figure 6 Event log composition (see online version for colours)

24 L. Hernandez et al.

Figure 7 Process mining results (see online version for colours)

Another path deviation has occurred during the transition B:
eliminating tuples of the cleaning task. In this case, half of
the original number of cases were eliminated, which was
much higher than expected. Thus, an investigation was
carried out to identify the causes of such a behaviour. It was
found that due to network failures, the tuples generated by
the IoT devices have been duplicated and many missing
values were also found. In particular, IoT data streams are

usually noisy and incomplete, making them more
challenging to conform to an expected stream behaviour.

Figure 8 reveals a parallelism among three transitions
that have occurred during the data aggregation task. This
kind of stream behaviour was not expected since these
transitions were modelled as a sequence of actions. This
behaviour has also exposed an important logical problem
with the algorithm used for the execution of the aggregation
task. For example, the total trip time was computed for only
352 trips for bus line 51, since more cases were classified as
stops than moves. We were able to infer that more than
57.8% of cases were classified as stops during the
aggregation task, whereas 42.2% were classified as moves.
The output of this automated tasks has generated 145,288
cases which were later sent to the cloud. There is a high
probability that a significant number of trips were not
computed during the aggregation tasks.

Figure 9 illustrates four snapshots of the stream data
flows that were observed during the execution of the
transitions. In total, eight bottlenecks have emerged during
the execution of five transitions. The first bottleneck took
place due to a delay of the input cases for the execution of
the transition C: normalising tuples [Figure 9(a)]. This
indicates that the time spent to execute this transition was
significant longer than the time used for the event windows.
The second bottleneck was a consequence of the first
bottleneck since the following transition D: grouping tuples
experienced a delay in its input cases as well as in its output
cases [Figure 9(b)]. This cascade effect was further
observed in the next transition E: sorting tuples as shown in
Figure 9(c). And even during the execution of the parallel
transitions of our aggregation task, the bottleneck has
persisted to occur as shown in Figure 9(d). These process
mining results demonstrate the important role of DPN
models in identifying bottlenecks issues with algorithms
that are being developed for IoT data streams. Ideally, an
automated analytical workflow should support flexible data
rates to make sure any relevant tuple has arrived at an
automated task at the right time.

Figure 8 Process mining results for the three transitions of the aggregation task (see online version for colours)

 Uncovering data stream behaviour of automated analytical tasks in edge computing 25

Figure 9 Bottlenecks observed during the execution of the transitions (see online version for colours)

Figure 10 Misalignments observed during the execution of the transitions (see online version for colours)

26 L. Hernandez et al.

Figure 11 Conformance-checking results observed during the execution of the transitions (see online version for colours)

The total number of traces registered was 337,940
[Figure 10(a)]. The misalignments observed in our DPN
model were exceptionally revealing since the transitions of
receiving and eliminating tuples were aligned, meanwhile
the remaining transitions were misaligned [red transitions in
Figure 10(b)]. In general, misalignments are expected to
occur while complex automated analytical tasks are being
executed. The minimal alignment percentage was 29%,
whereas the average and median alignment percentages
were 66% and 75%, respectively as shown in Figure 10(c).
We believe that these misalignments might have occurred
due to the cascade bottleneck effect that has taken place.

More research is needed to identify the causes for
misalignments in IoT data streams. Additionally, in order to
understand the behavioural patterns of cases and their
deviations, we suggest that the observing deviation on a
specific transition of an automated task could be only a true
deviation if the percentage of alignment for that specific
action is above 75% (i.e., the median alignment percentage).
Therefore, our assumption is that if the percentage of
alignment is below of such a limit, the behavioural
deviation of cases will be the result of misalignments in the
transitions, rather than to be a true deviation in the patterns
of the cases. Thus, an important part of a PM for streaming
analytics is to align as much as possible all transitions of
automated tasks.

Finally, Figure 11 shows that all transitions in the
process discovery that were misaligned have successfully
passed a conformance checking. In this case, the function of
the conformance checking was used to determine that the
alignments were successfully performed since the minimal,
average, median, and maximal fitness percentages have
reached 100%.

8 Conclusions and future research

A real-world smart transit scenario was used to explore
process mining for uncovering the actual behaviour of IoT
data streams when executing streaming analytics in edge
computing. The results from this learning process have
uncovered the limitations of computational resources and
algorithms designed for the execution of automated
analytical tasks. We have observed two main path
deviations that have indicated that 6.6% of the total number
of cases followed a different path from the one expected. On
the other hand, the constraint of one single transition has
actually eliminated 50% of the raw tuples generated from
the IoT devices. This is an unacceptable data flow
behaviour in streaming analytics, mainly because it hinders
the extraction of valuable information from the internet of
things (IoT). This behaviour has emerged due to poor

 Uncovering data stream behaviour of automated analytical tasks in edge computing 27

connectivity conditions between IoT devices and edge
nodes in our smart transit scenario.

Several bottlenecks patterns were further observed
during the process mining. They have occurred during the
transitions nodes C: normalising tuples, D: grouping tuples
and E: sorting tuples. The algorithms were modified in
order to avoid these bottlenecks in the future. We also seek
to create new event logs that will include other transitions in
a smart transit scenario. Specially, it would be important to
have a stringer control of the tasks in which the bottlenecks
have occurred. Finally, we would like also to explore the
potential use of DPNs in other real-world scenarios.

Regarding the scalability of the tools used, there is a
trade-off between the size of event logs and the new insights
emerging from them. Even though there are no size
restrictions for an event log, a time-consuming processing
step is required in order to generate an event log from IoT
data streams. The reformatting of the original tuples into the
ProM format is not a straightforward step. Large volume of
event logs will play a role in discovering more patterns and
unknown behaviours in edge computing.

References
Adam, N.R., Atluri, V. and Huang, W.K. (1998) ‘Modeling and

analysis of workflows using Petri Net’, Journal of Intelligent
Information Systems, Vol. 10, No. 2, pp.131–158.

Adriansyah, A., vaDongen, B.F. and van der Aalst, W.M.P. (2011)
‘Conformance checking using cost-based fitness analysis’,
Proceedings of IEEE International Conference on Enterprise
Distributed Object Computing, Helsinki, Finland.

Al Ridhawi, I., Kotb, Y. and Al Ridhawi, Y. (2017) ‘Workflow-net
based service composition using mobile edge nodes’, Journal
of IEEE Open Access, volume 5, Special Section on Mobile
Edge Computing, pp.23719–23735, DOI:
10.1109/ACCESS.2017.2766068.

Appice, A. and Malerba, D. (2016) ‘A co-training strategy for
multiple view clustering in process mining’, Journal of IEEE
Transactions on Services Computing, Vol. 9, No. 6, pp.832–
845, DOI: 10.1109/TSC.2015.2430327.

Atzori, L., Iera, A. and Morabito, G. (2010) ‘The internet of
things: a survey’, Computer Networks, Vol. 54, No. 15,
pp.2787–2805.

Badalotti, F., Espindola, J.C., Schwanke, D., Petry, G., Nieto, C.,
Bove, M. and Barbosa, A. (2018) ‘RFID technology as a life
cycle management tool in the liquefied petroleum gas
industry’, Journal & Magazines of IEEE Latin America
Transactions, Vol. 16, No. 2, pp.391–397, DOI:
10.1109/TLA.2018.8327391.

Bendoukha, S., Moldt, D. and Wagner, T. (2013) ‘Enabling
cooperation in an inter-cloud environment: an agent-based
approach’, Proceedings of IEEE 24th International Workshop
on Database and Expert System Applications, pp.217–221,
Los Alamitos, CA, DOI: 10.1109/DEXA.2013.27.

Caesarita, Y., Sarno, R. and Sungkono, K.R. (2017) ‘Identifying
bottlenecks and fraud of business process using alpha ++ and
heuristic miner algorithms (case study: CV.
WicaksanaArtha)’, Proceedings of IEEE 11th International
Conference on Information & Communication Technology
and System (ICTS), pp.143–148, Surabaya, DOI:
10.1109/ICTS.2017.8265660.

Cao, H., and Wachowicz, M. The design of an IoT-GIS platform
for performing automated analytical tasks. Computers,
Environment and Urban Systems, 74, 23-40, 2019. DOI:
10.1016/j.compenvurbsys.2018.11.004

Data Sheet: Cisco 809 Industrial Integrated Services Routers
(2017) C78-734980-03 05/17, Cisco USA, pp.1–17.

Fernández-Caramés, T.M. and Fraga-Lamas, P. (2018) ‘A review
on human-centered IoT-connected smart labels for the
Industry 4.0’, Journal of IEEE Open Access (Early Access),
pp.1–19, DOI: 10.1109/ACCESS.2018.2833501.

Garrido-Hidalgo, C., Hortelano, D., Roda-Sanchez, L., Olivares,
T., Ruiz, M.C. and Lopez, V. (2017) ‘IoT heterogeneous
mesh network for human-in-the-loop challenges towards a
social and sustainable Industry 4.0’, Journal of IEEE Open
Access Class Files (Early Access), Vol. 14, No. 8, pp.1–20,
DOI: 10.1109/ACCESS.2018.2836677.

Gcaba, E. and Dlodlo, N. (2016) ‘The internet of things for South
African tourism’, Proceedings of IEEE International
Conference on the IST-Africa Week, Durban, South Africa,
DOI: 10.1109/ISTAFRICA.2016.7530573.

Gonzalez del Foyo, P.M. and Silva, J.R. (2008) ‘Using time petri
nets for modeling and verification of timed constrained
workflow systems’, Proceedings of ABCM Symposium Series
in Mechanics, Vol. 3, pp.471–478, ABCM, Sao Paulo, Brazil.

Hernandez, L., Cao, H. and Wachowicz, M. (2017) ‘Implementing
an edge-fog-cloud architecture for stream data management’,
Proceedings of the 2017 IEEE International Conference on
Fog World Congress, Santa Clara, California, USA.

Jagadeesh, R.P., Bose, C., Mans, R.S. and van der Aalst, W.M.P.
(2013) ‘Wanna improve process mining results? It’s high time
we consider data quality issues seriously’, Proceeding of
IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), Singapore.

Jeon, Y.J., Eun An, K., Lee, S.W. and Seo, D. (2018) ‘Improved
durability of soil humidity sensor for agricultural IoT
environments’, Proceedings of IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas,
USA, DOI: 10.1109/ICCE.2018.8326223.

Kapitanova, K., Son, S.H., Woochul, K. and Won-Tae, K. (2011)
‘Modeling and analyzing real-time data streams’, Proceeding
of 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), Newport Beach, CA, USA, pp.91–98,
DOI: 10.1109/ISORC.2011.21.

Lee, Y.J. and Kim, E.K. (2015) ‘Smart device based power
generation facility management system in smart grid’,
Proceedings of 17th IEEE International Conference on
Advanced Communication Technology (ICACT), Seoul, South
Korea, DOI: 10.1109/ICACT.2015.7224919.

Leoni, M. and van der Aalst, W.M.P. (2013) ‘Data-aware process
mining: discovering decisions in processes using alignment’,
Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pp.1454–1461, Portugal.

Lohmann, N., Song, M. and Wohed, P. (2013) ‘Business process
and management workshops’, Proceedings of the BPM
International Workshop 2013, Vol. 127 of LNBIP, Springer,
pp.72–76.

Mastroianni, C., Cesario, E. and Giordano, A. (2017) ‘Balancing
speedup and accuracy in smart city parallel applications’,
Proceedings of Euro-Par 2016: Parallel Processing
Workshops, Springer International Publishing AG, Lecture
Notes in Computer Science (LNCS) 10104, pp.224–235,
DOI: 10.1007/978-3-319-58943-5_18.

28 L. Hernandez et al.

McNeil, P. (2018) ‘Secure internet of things deployment in the
cement industry: guidance for plant managers’, Proceedings
of IEEE Industry Applications Magazine, Vol. 24, No. 1,
pp.14–23, DOI: 10.1109/MIAS.2017.2739833.

Petri, I., Rana, O., Bignell, J., Nepal, S. and Auluck, N. (2017)
‘Incentivizing resource sharing in edge computing
applications’, Proceedings of International Conference on the
Economics of Grids, Clouds, Systems, and Services, Springer
International Publishing AG, Lecture Notes in Computer
Science (LNCS) 10537, pp.204–215.

Prabhakara, R., Bose, J.C. and van der Aalst, W.M.P. (2010)
‘Trace alignment in process mining: opportunities for process
diagnostics’, Proceedings of 8th International Conference,
and Business Process Management Publications, Hoboken
NJ, USA, DOI: 10.1007/978-3-642-15618-2_17.

Pulsanong, W., Porouhan, P. and Tumswadi, S. (2017) ‘Using
inductive miner to find the most optimized path of workflow
process’, Proceedings of IEEE fifteenth International
Conference on ICT and Knowledge Engineering. pp.1–5,
Bangkok, DOI: 10.1109/ICTKE.2017.8259633.

Ramesh, M.V., Nibi, K.V., Kurup, A., Mohan, R., Aiswarya, A.,
Arsha, A. and Sarang, P.R. (2017) ‘Water quality monitoring
and waste management using IoT’, Proceedings of IEEE
International Conference on Global Humanitarian
Technology Conference (GHTC), San Jose, CA, USA, DOI:
10.1109/GHTC.2017.8239311.

Reisig, W. (2013) Marked Graphs. In: Understanding Petri Nets,
Springer, pp.163–167, Berlin, Heidelberg, DOI:
https://doi.org/10.1007/978-3-642-33278-4_18.

Rozinat, A. (2018) Disco User’s Guide, pp.1–10, Disco Fluxicon
Co.

Ruengittinun, S., Phongsamsuan, S. and Sureeratanakorn, P.
(2017) ‘Applied internet of thing for smart hydroponic
farming ecosystem (HFE)’, Proceedings of 10th IEEE
International Conference on Ubi-media Computing and
Workshops (Ubi-Media), Thailand, DOI: 10.1109/
UMEDIA.2017.8074148.

Sharma, Y., Mathew, M. and Yanamandram, K. (2017)
‘Enhancement of the biogas system application using solar
photovoltaic and IoT based automation’, Proceedings of IEEE
International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT),
Kannur, India, DOI: 10.1109/ICICICT1.2017.8342676.

Spiteri Staines, A. (2016) ‘Modelling simple network graphs using
matrix vector transitions net’, International Journal of
Computers and Communications, Vol. 10, pp.11–17, ISSN:
2074-1294.

Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H. and Yang, Q.
(2015) ‘A hierarchical distributed fog computing architecture
for big data analysis in smart cities’, Proceedings of the ASE
Big Data & Social Informatics, ACM.

Tolosana-Calasanz, R., Diaz-Montes, J., Rana, O. and Parashar, M.
(2014) ‘Extending cometcloud to process dynamic data
streams on heterogeneous infrastructures’, Proceedings of
IEEE International Conference on Cloud and Autonomic
Computing, pp.196–205, London, DOI: 10.1109/ICCAC.
2014.22.

van der Aalst, W.M.P. (2013) ‘Process cubes: slicing, dicing,
rolling up, and drilling down event data for process mining’,
Asia Pacific Conference on Business Process Management
(AP-BPM 2013), Volume 159 of Lecture Notes in Business
Information Processing, pp.1–22, Springer-Verlag, Berlin.

van der Aalst, W.M.P. (2014) Extracting Event Data from
Databases to Unleash Process Mining, BPM Center Report
BPM-1410, BPMcenter.org.

van der Aalst, W.M.P.(2011) Process Mining – Discovery,
Conformance and Enhancement of Business Processes,
Springer-Verlag, Berlin, Heidelberg.

van Hee, K., Oanea, O., Post, R., Somers, L. and van der Werf,
J.M. (206) ‘Yasper. A tool for workflow modeling and
analysis’, Proceedings of the Sixth International Conference
on Application of Concurrency to System Design (ACSD
2006), IEEE Computer Society, Washington, DC, pp.279–
282.

Verbbek, H.M.W., Buijs, J.C.A.m., van Dongen, B.F. and van der
Aalst, W.M.P. (2012) ‘XES, XESame, and ProM 6’,
Proceedings of Business Process Management Workshops,
Vol. 99 of LNBIP, Springer Verlag.

Verbeek, H.M.W. (2012) ‘ProM6 Tutorial’, Proceedings of
promtools.org.

Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F. and van der
Aalst, W.M.P. (2012) ‘ProM6: the process mining toolkit’,
Proceedings of ceur-ws.org, Vol. 615, No. 13, pp.1–6,
Eindhoven University of Technology, The Netherlands.

Workcraft.org, Modeling with Signal Transition Graphs:
Distributed Mutual Exclusion, Workcraft Tutorial in
Modelling [online] https://workcraft.org/tutorial/modelling/
stg/start (accessed 2 October 2019).

Xie, Z., Han, L. and Baldock, R. (2013) ‘Augmented petri net cost
model for optimisation of large bioinformatics workflows
using cloud’, Proceedings of IEEE European Modelling
Symposium (EMS), Manchester, pp.201–205, DOI:
10.1109/EMS.2013.35.

Zhang, X., Zheng, H. and Liu, Y. (2012) ‘A petri net based
context-aware workflow system for smart home’,
Proceedings of IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), pp.2336–2342, Shanghai, DOI: 10.1109/
IPDPSW.2012.287.

Zheng, H., Wang, Y. and Zhong, W. (2012) ‘Analysis of the
digital home wireless meter reading interface execution
process’, Proceedings of the IEEE Second International
Conference on Cloud and Green Computing, pp.614–620,
Xiangtan, DOI:10.1109/CGC.2012.107.

