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Abstract: Massive volumes of data streams are expected to be generated by the internet of things 
(IoT). Due to their dispersed and mobile nature, they need to be processed using automated 
analytical tasks. The research challenge is to uncover whether the data streams, which are being 
generated by billions of IoT devices, actually conform to a data flow that is required to perform 
streaming analytics. In this paper, we propose process discovery and conformance checking 
techniques of process mining in order to expose the flow dependency of IoT data streams 
between automated analytical tasks running at the edge of a network. Towards this end, we have 
developed a Petri Net model to ensure the optimal execution of analytical tasks by finding path 
deviations, bottlenecks, and parallelism. A real-world scenario in smart transit is used to evaluate 
the full advantage of our proposed model. Uncovering the actual behaviour of data flows from 
IoT devices to edge nodes has allowed us to detect discrepancies that have a negative impact on 
the performance of automated analytical tasks. 
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1 Introduction 

Streaming analytics is a process that consists of  
well-defined automated tasks designed to retrieve, manage 
and analyse data streams that are generated by a large 
number of IoT devices. These devices operate as providers 
and consumers of data related to a specific application, 
usually supporting point-to-point communications that are 
happening in real-time. They are a global network of 
sensors, actuators, smartphones, vehicles, appliances, 
wearables, and any other type of device that is converted 
into a ‘connected thing’ for unlocking new services that can 
be applied in smart transit (Mastroianni et al., 2017; Cao 
and Wachowicz, 2018; Hernandez et al., 2019; Tang et al., 
2015), smart homes (Zhang et al., 2012; Zheng et al., 2012), 
manufacturing industries (Garrido-Hidalgo et al., 2017; 
Fernández-Caramés and Fraga-Lamas; McNeil, 2018), 
farming (Jeon et al., 2018; Ruengittinun et al., 2017), utility 
mining (Lee and Kim, 2015; Gcaba and Dlodlo, 2016; 
Ramesh et al., 2017), oil and gas plants (Sharma et al., 
2017; Badalotti et al., 2018), to mention a few. 

The analytical tasks are usually required to be 
automated for handling the fast data flow generated from 
moving data streams from IoT devices to edge nodes and 
later to a cloud platform. These tasks are also dependent on 
one another for receiving the data streams from IoT devices 
as an input which in turn will produce new information as 
part of its output. In particular, the dependencies among 
tasks are considered dynamic because they are executed as 
soon as the data streams arrive according to an event time 
window. Previous research work has been focused on 
scalability and communication issues due to the 
heterogeneity of technologies and the pitfalls in moving 
data streams from the IoT devices directly to a cloud 
platform (Atzori et al., 2010; Xie et al., 2013; Tolosana-
Calasanz et al., 2014; Bendoukha et al., 2013). In contrast, 
very little is known about the actual behaviour of the data 
streams when executing automated analytical tasks at the 
edge nodes of a network. The rationale of edge computing is 
that automated analytical tasks should be performed closer 
to IoT devices in order to reduce network latency and the 
risk of infringing privacy rights. 

Process mining (PM) techniques provide a unique 
prospect to compare the expected behaviour against the 
actual behaviour of IoT data streams across automated tasks 
(van der Aalst, 2011). Automated analytical tasks are 
essentially modelled as a process discovery which is based 
on modelling the expected tasks and observing their actual 
behaviour that emerges from executing them. Diagnosing 
discrepancies such as path deviations can help us unfolding 
path deviations caused by the data streams that have 
followed different paths to those expected to occur (i.e., 
conformance checking). Bottlenecks can also impact the 
speed in which the data streams flow, causing that the tasks 
involved in the bottleneck to experience higher processing 
time than expected, and as a result, triggering a delay in 
their execution. 

Traditional PM techniques have been previously used to 
model task behaviour, but they failed to consider the 

association between a data flow and the execution of a task 
that depends on this dataflow (Adam et al., 1998). It is of 
paramount importance to model the expected behaviour of 
IoT data streams during the execution of automated 
analytical tasks in edge computing. Logical specifications 
are needed to reflect what actually happens to the IoT data 
streams arriving at a large number of edge nodes. PM 
techniques are promising to model the behaviour of IoT data 
streams by extracting knowledge from event logs available 
for a real-world scenario (van der Aalst, 2011;  
van der Aalst, 2014). Based on an event log, a process 
model can be constructed for capturing the behaviour that 
emerges from this log. 

Previous research work has proposed a variety of PM 
models such as marked graphs (MG) (Reisig, 2013), signal 
transition graphs (STG) (Workcraft.org, https://workcraft. 
org/tutorial/modelling/stg/start), Petri-nets (PN) (Adam  
et al., 1998), temporal constrain Petri Nets (TCPN) 
(Gonzalez del Foyo and Silva, 2008), predicated Petri Nets 
(PPN) (Adam et al., 1998), and matrix vector transition net 
(MVTN) (Spiteri Staines, 2016). In this research paper, we 
propose to develop a PN model for analysing IoT data 
streams during the process of performing automated tasks at 
an edge node. A PN model was selected mainly because an 
MG model is a restricted graph approach that does not allow 
any modelling choices or data stream variations at all. It is 
only recommended in cases whose transitions are very 
simple. Although an STG model can be considered as 
similar to a PN model, it has a major limitation since STG 
models usually omit transitions boxes and divides tasks into 
inputs, outputs, and internal. Other examples such as the 
TCPN, PPN and MVTN models also follow the PN 
principles but then again, they have modelling constraints 
on temporal behaviour and abstract data types that hamper 
their use to capture the relationships among automated tasks 
running at an edge node. 

APN model is a bipartite directed graph which provides 
a generic approach that should be sufficient to represent any 
process discovery of billions of IoT data flows and perform 
conformance checking of automated tasks running at 
different edge nodes. In particular, a PN model with data 
(DPN) offers a logical specification that can provide a basis 
for accurate conformance checking that can enable us to 
foster higher confidence levels in the correctness of the 
execution of the tasks. This is vital for streaming analytics 
because it will allow us to diagnose if there is a change 
between the observed behaviour recorded in an event log 
and the planned behaviour of the algorithm developed to 
perform an automated task. Moreover, a DPN model has the 
advantage of monitoring the flow dependency of the IoT 
data streams between tasks and their temporal relationships 
since the event logs can be generated on the fly. 

Our research challenge consists of processing a vast 
volume of data streams continuously coming at high 
velocity from a large number of IoT devices, but also 
making sure that the behaviour of these data streams 
conform to the constraints of automated tasks. Towards this 
challenge, our scientific contributions are as follows: 
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• Our research work is a first step towards understanding 
the actual behaviour of IoT data streams and its impact 
on the performance of automated tasks running at edge 
nodes. PM techniques have a potential to help us to 
identify inconsistent discrepancies in IoT data stream 
such as path deviations, bottlenecks, and parallelism. 

• Our proposed DPN model outlines the importance of 
control-flow alignment for IoT data streams. Previous 
research work on DPN models has been focused on the 
task itself to which an event log refers to, overlooking 
the actual data flow taking place to execute this task, in 
particular with automated tasks in edge computing. 

• A smart transit scenario is used to validate a new 
application for DPN models. Smart transit in the cities 
is expected to generate billions of IoT data streams. Our 
DPN model provides a unique approach to verify the 
execution of automated analytical tasks. To the best of 
our knowledge, DPN models have not been applied in 
the context of IoT and a smart transit scenario before. 

This paper is organised as follows: Section 2 introduces the 
preliminary concepts related to PN models, event logs, 
alignments, and streaming analytics. The related work is 
discussed in Section 3, and Section 4 introduces our real-
world scenario where IoT data streams are generated by a 
smart transit system. Section 5 explains our proposedDPN 
model and Section 6 describes its process mining discovery. 
Section 7 contains a description of the implementation steps 
and obtained results. Finally, Section 8 concludes this 
research, and shares our future research work. 

2 Preliminaries 

This section introduces basic concepts related to Petri Nets 
previously defined in van der Aalst (2011), Leoni and van 
der Aalst (2013), Adriansyah et al., 2011; Prabhakara et al., 
2010) that are relevant for streaming analytics (Xie et al., 
2013; van der Aalst, 2011; Adriansyah et al., 2011; Al 
Ridhawi et al., 2017). 

Definition 1: Petri Net 

A PN is a tuple (P, T, F, m0) where P is a finite set of 
places; T is a finite set of transitions; F is a flow relation 
where F ⊆ (P × T) ∪ (T × P), and m0 is an initial marking 
representing the initial distribution of tokens (Leoni and van 
der Aalst, 2013). One place may contain tokens that flow to 
other places by executing a transition (i.e., an action). 
Figure 1 provides a representation of a PN and the flow 
relations between places. 

We state that a transition T1 is enabled in m1 at place P1 
and that its firing produces the successor marking m2 at 
place P2 and m3 at place P3. Following the flow relations, the 
transition T2 is enabled in m2 and m3, and its firing produces 
the successor m4 and m3. Meanwhile transitions consume 
and produce tokens, places represent the resources that are 
needed to be available before a transition is triggered as 

well as states that need to be met before a transition can be 
carried out. 

Figure 1 An example of a Petri Net diagram (created in 1939) 
(see online version for colours) 

 

Definition 2: Petri Net with data 

A data Petri Net (DPN) is a PN in which tokens carry data. 
It can handle data variables, allocate resources, define time 
constraints and perform read/write actions. 

A DPN is a tuple DPN = (P, T, F, V, U, R, W, G) where 
P is a finite set of places; T is a finite set of transitions; F is 
a flow relation where F ⊆ (P × T) ∪ (T × P), V is a finite set 
of variables; U is a function that defines the values 
admissible for each variable v ∈ V, R is a function R ∈ T 
→ 2 V that labels each transition with the set of variables 
that it must read; W is a function W ∈ T → 2 V that labels 
each transition with the set of variables that it must write; 
and a data dependent guard G ∈ T → GV that verifies 
whether all the input places are marked before a transition is 
triggered. A guard can be any Boolean expression over V 
using logical operators such as conjunction (∧), disjunction 
(∨), and negation (¬). 

Definition 3: IoT data streams 

IoT data streams are unbounded set of tuples that are 
transported as discrete data packages of varying sizes at 
periodic intervals of time (i.e., event time windows). Each 
tuple may contain several attributes T1 = (S1, x1, y1, t1) 
where S1 is a fixed number of measurements generated by 
an IoT device, and (x1, y1) is the geographical location of an 
IoT device at the time t1 which is when the measurements 
were generated. 

Definition 5: streaming analytics 

Streaming analytics is a network of automated tasks t1; t2, 
…, tn, that are related to each other based on their order of 
execution. Each task consists of a set of actions that belong 
to an algorithm used to execute such a task. Tuples flow 
from one task to another, and different tasks require a 
variety of computational resources that will determine their 
processing time. In this paper, we introduce streaming 
analytics as a DPN model that is a generic-model used for 
modelling, ordering, and analysing the behaviour of IoT 
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data streams during the execution of automated tasks at 
edge nodes. 

In our DPN model, the bi-partite graph consists of: 

• Place nodes that are the required state of a tuple and the 
computational resources which are needed to trigger a 
transition. 

• Transition nodes represent an action that is needed in 
order to execute an automated task. Multiple transitions 
can refer to the same automated task or different 
automated tasks. 

• A flow relation is the continuously transport of tuples 
(i.e., tokens) from one transition to another at periodic 
intervals of time. Event time windows are created since 
tuples may arrive out-of-order of their timestamp. 

• Tokens are the tuples (i.e., IoT data streams). 

• Variables are the attributes of a tuple that was 
generated by an IoT device. 

• Initial Marking is continuously being updated since the 
number of tuples inside an event window may vary. 

• Final Marking is unknown. It will usually be defined 
when an IoT device stops sending data to an edge node. 

Definition 6: process discovery 

It is a learning process that relates a modelled behaviour of 
a Petri Net and an observed behaviour recorded on an event 
log L. The events in the event log L must be related to 
transitions in the model and can be represented by a pair (a, 
φ) consisting of an action to execute an automated task and 
a value assignment φ associated with cases (i.e., process 
instances). 

Definition 7: data-aware conformance checking 

It is the process of diagnosing and quantifying discrepancies 
between modelled behaviour and observed behaviour. It 
requires an alignment of an event log L and the DPN model 
in such a way each single trace σ ∈ L and the DPN model. 
This means that conformance checking seeks to match the 
cases inside an event log with the planned behaviour of the 
automated tasks of the DPN model. A DPN is aligned if 
every trace in the event log can be mirrored somehow by the 
model. 

3 Related work 

Previous research work has already shown the important 
role of applying PM techniques for discovering behaviour 
patterns with the aim of improving the way to process data 
(Mastroianni et al., 2017; Zhang et al., 2012; Zheng et al., 
2012; Xie et al., 2013; Tolosana-Calasanz et al., 2014; 
Bendoukha et al., 2013; Leoni and van der Aalst, 2013; 
Adriansyah et al., 2011; Al Ridhawi et al., 2017;  
van der Aalst et al., 2013; Jagadeesh et al., 2013;  
 

Kapitanova et al., 2011; Petri et al., 2017; Caesarita et al., 
2017; Pulsanong et al., 2017; Appice and Malerba, 2016). In 
particular, Leoni and van der Aalst (2013) were pioneering 
in presenting a data-aware process discovery technique for 
applying a DPN model using real-life event logs obtained 
from hospitals and mobile phone carriers. In their research, 
they point out the importance of using real-world event logs 
to discover data-flow patterns that can be applied to 
improve the way to analyse process behaviours. Process 
cubes have also been proposed for modelling a set of events 
as individual cells of a process cube structure (van der Aalst 
et al., 2013). A multidimensional PM is developed based on 
online analytical processing (OLAP) queries which are 
defined according to different dimensions of events. The 
WABO1 event log containing 20 dimensions that is publicly 
available was used to illustrate the temporal distribution of 
events (Lohmann et al., 2013). 

Regarding the data quality contained into the event logs, 
Adriansyah et al. (2011) proposes a conformance checking 
approach that deals with identifying unobservable actions in 
event logs that might lead to false-negative patterns in data 
management systems. Jagadeesh et al. (2013) provides a 
summary which identifies ten categories of data quality 
issues in PM including event granularity, case 
heterogeneity, voluminous data, timestamp issues, missing 
data, ambiguity between events, process flexibility, noisy 
data, mashed process, and scoping. More research is needed 
to address data quality issues in event logs, in particular 
with IoT data which is usually noisy and incomplete, 
making it more challenging to generate reliable event logs. 

From a data streaming perspective, Kapitanova et al. 
(2011) proposed the MEDAL formal specification language 
based on combining features from stochastic, timed, and 
coloured PNs, to model and analyse stream queries in terms 
of workload and query cost. Using simulated event logs, a 
snapshot of the data streams is created for each query 
statement, even when there are new data streams arriving in 
the system. The simulation results are obtained from the PN 
simulator Yasper (van Hee et al., 2006). 

From a PM perspective, Al Ridhawi et al. (2017) use PN 
models to generate event logs containing actions needed for 
mobile edge node cooperation, compare them, and find the 
one that produces the minimal cost in terms of latency and 
path stability. Bioinformatics analytics based on PN models 
has also been proposed in the literature to show the trade-off 
between the cost of storing intermediate data and the 
computing costs incurred in regenerating this data using 
cloud resources (Xie et al., 2013). They are also used as 
modelling methods for understanding the dynamic resource 
allocation in the cloud with the target of assuring quality of 
service and throughput (Tolosana-Calasanz et al., 2014). 

Control-flow analysis in the cloud has been  
explored to coordinate actions of a group of distributed 
resources within a cloud infrastructure. Bendoukha et al. 
(2013) explores a PN model for modelling resource sharing 
for edge computing applications. Petri et al. (2017) describe 
potential PN models for micro data centres to be  
deployed at edge nodes. The tested scenarios are healthcare, 
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vehicle-to-vehicle (V2V), and vehicle-to-interface (V2I) 
communications. 

Few attempts could be found on applying DPN models 
on streaming analytics. And there is even fewer attempts to 
integrate DPN models and IoT in general. Mastroianni  
et al. (2017) apply a DPN model to a simulated event log 
generated from a simulated set of IoT devices being carried 
out by pedestrians or deployed in vehicles moving on a 
smart street. The PM is designed to improve our 
understanding on how to tackle scalability and network 
issues considering to important features of the IoT devices, 
such as mobility and geo-distribution aspects. Their 
resulting patterns are showing the trade-off between 
scalability and latency to improve Quality of Services. No 
attention was given to the impact of data flows on the 
performance of automated analytical tasks. 

Regarding to specialised tool kits that support PM 
approaches, Caesarita et al. (2017) utilise the alpha and 
heuristic miner algorithms to identify bottlenecks and frauds 
of business processes. The authors take full advantage of 
ProM6 (Verbbek et al., 2012), that is as a PM tool kit, to 
compare the modelling performance among several types of 
mine algorithms. Complementary, the inductive miner 
algorithm (Pulsanong et al., 2017) is used to find out the 
most optimised path, in which the implementations are done 
over Disco Fluxicon Co. (van der Aalst, 2011) tool kit. 
These previous research works validate the potential of PM 
tools for analysing real-world event logs generated by 
healthcare and online business applications. 

Finally, Appice and Malerba (2016) propose a multiple 
view clustering solution to reduce/clean spaghetti-like PM 
models. This approach aims to unveil the problems that 
arise when an event log is examined under several 
perspectives, such as the control-flow perspective (ordering 
of actions), the organisational perspective (organisation of 
resources), the trace perspective (frequency of actions), and 
the performance perspective (time processing). 

4 The smart transit scenario 

In our smart transit scenario, every vehicle of a transit 
network is equipped with an IoT device which sends one 
tuple every five seconds to an edge node installed inside a 
bus (Figure 2). Event time windows are used in order to 
create more accurate event logs, even if the tuples arrive 
out-of-order of their timestamp. 

In edge computing, automated tasks are performed near 
IoT devices. The main reason is to take the advantage of 
edge nodes as distributed resources in charge of carrying out 
many automated tasks. In our smart transit scenario, four 
automated tasks have been selected: data ingestion, data 
cleaning, data contextualisation, and data aggregation. 

The data streams that reach an edge node are unbounded 
tuples having 17 attributes containing information as shown 
in Table 1. Once the tuples arrive at the edge node, the  
 
 
 

automated analytical tasks are triggered without human  
intervention. This has been achieved by developing 
algorithms for each analytical task (i.e., data ingestion, data 
cleaning, data contextualisation, and data aggregation). The 
edge nodes have no control over the order in which a tuple 
arrives within an event time window. 

Figure 2 Overview of our smart transit scenario 

 

One expected stream behaviour in our smart transit scenario 
is when a single input tuple is processed by one task, and 
after the execution of this task, an updated output tuple is 
generated. The tasks that present this type of stream 
behaviour include the data ingestion task which consists of 
flowing all the raw tuples from the IoT devices to an edge 
node. The tuples being generated by the IoT devices of the 
transit system might use different event time windows, 
having time granularities of each minute, hour, week, or 
month depending on the mobility context. All the tuples that 
arrive at an edge node are kept in memory. 

Another task that presents this linear behaviour is the 
data cleaning task which is triggered as soon as the raw 
tuples arrive at an edge node, and it aims to remove errors 
and inconsistencies. Ensuring data quality for a high volume 
of tuples is a nontrivial step since IoT devices usually 
produce noisy data. Once the data cleaning task is finished, 
many tuples might have been deleted and as a result, only 
the cleaned tuples will be ready to flow to the data 
contextualisation task. 

The data contextualisation task aims to perform 
semantic enrichment by adding new attributes to each 
cleaned tuple accordingly to a bus trip. Two new attributes 
(i.e., move and stop) are added to the original tuples to give 
information about if a vehicle is moving or not moving 
during a particular trip. The moves and stops are computed 
using the distance between two consecutive locations of a 
moving bus along a trip. We consider that if the distance 
between two consecutive locations is larger than 15m, the 
bus is moving (i.e., move), otherwise the bus is not moving 
(i.e., stop) (Cao and Wachowicz, 2018). 
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Table 1 Transit feed of the smart transit scenario 

ID Attribute name Description 
1 vlr_id The ID of the data point in the vehicle location report table. 
2 route_id_vlr The route ID in the vehicle location report table. 
3 route_name The name of the route. 
4 route_id_rta The route ID in the route in the route transit authority table. 
5 route_nickname The abbreviation of the route. 
6 trip_id_br The trip Id in the route table. 
7 transit_authority_service_time_id Transit authority service time ID. 
8 trip_id_tta Transit authority trip ID. 
9 trip_start Start time of the trip. 
10 trip_finish Finish time of the trip. 
11 vehicle_id_vab Vehicle ID. 
12 vehicle_id_vlr Vehicle ID in the vehicle location report table. 
13 vehicle_id_vlr_ta Descriptive name of the bus. 
14 bdescription Bus description. 
15 lat Latitude. 
16 lng Longitude. 
17 timestamp Timestamp of the data point. 

Table 2 The transitions in our DPN model 

Transition Actions Automated task Tuple state 

A Receiving tuples Data ingestion Raw 
B Normalising tuples 
C Eliminating tuples 

Data cleaning Cleaned 

D Grouping tuples 
E Sorting tuples 
F Computing moves/stops 

Data contextualisation Contextualised 

G Computing total number of stops per trip 
H Computing total number of moves per trip 
I Computing actual duration of trips 

Data aggregation Aggregated 

 
Another stream behaviour found in our smart transit 
scenario is when a set of ordered tuples are processed by a 
task at once, and as a result, a single new tuple is generated. 
One example includes the data aggregation task. This task 
can offer information that may have a wide impact on the 
observed behaviour by summarising particular patterns that 
can generate global mobility patterns of the entire transit 
network. For instance, the data aggregation task consists of 
summarising the information contained in all tuples that 
belong to the same trip. The move/stop information can be 
used to identify the behaviour of the trips (i.e., group of 
tuples), instead of the behaviour of a single tuple. It can also 
provide new insights about which bus stops are most used 
and which others are not. Finally, the data aggregation task 
can also provide information about the total trip duration 
considering the real stream behaviour of the transit system 

as a whole system. Once the automated taskswere 
performed at the edge nodes, the historical outputs are sent 
to a cloud platform. This prevents semantically incorrect 
results in case of backpressure or delays due to failure 
recovery. 

5 The proposed DPN model 

Our DPN model is a bipartite graph consisting of two sets of 
nodes: places and transitions. The flow relation between the 
nodes are defined from a place to a transition or from a 
transition to a place. Table 2 summarises the transitions that 
have been used to model the expected data stream 
behaviour. 
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Figure 3 Overview of our DPN model for the smart transit scenario (see online version for colours) 

 

 
Figure 3 illustrates our DPN model using a workflow net for 
our smart transit scenario. The transitions (squared nodes) 
consist of a sequence of actions that should occur when an 
automated task is being executed by running an algorithm. 
Transitions also represent the changes that occur when 
tuples flow from one automated task to another. In our 
model, tuples being generated by IoT devices have four 
different states ranging from raw state, and cleaned state to 
a contextualised state and aggregated state. Places (circle 
nodes) are used to represent the resources available at the 
edge nodes. In our model, the resources are the algorithms 
developed for the execution of the tasks. They consist of 
Python scripts, which are automatically running in an edge 
node. The sequence of places and transitions is based on the 
occurrence order among the events in which the actions are 
triggered any time a tuple arrives in order to execute an 
automated task. Once an edge node has received a tuple, the 
transition A: receiving tuples is triggered, and it will run 
continuously until all tuples of an event time window are 
processed. The same will happen to all other transitions B: 
normalising tuples; C: eliminating tuples; D: grouping 
tuples, E: sorting tuples, and F: computing moves/stops. 
These transitions are again triggered when a new set of 
tuples arrived at a place belonging to a consecutive event 
time window. In contrast, the transitions G: computing total 
number of stops per trip, H: computing total number of 
moves per trip, and finally I: computing actual duration of 
trips require that their place nodes make sure that all tuples 
pertaining to a bus trip have been contextualised (i.e., 
contextualised state) before any transition is triggered. 

The proposed DPN model is based on the following 
modelling constraints: 

• A tuple is a high-quality tuple if it assures two 
requirements. The first requirement is accomplished if a 
tuple has successfully followed the path (i.e., trace) that 
was envisaged for every transition. The second 
requirement is fulfilled if the attribute values within the 
tuples are complete and are not missing. Otherwise a 
tuple is considered as an anomaly. 

• A trip is a good trip if 80% the tuples belonging to the 
same trip successfully follow the stream data flow of all 
transitions. Otherwise, a trip is considered as an 
anomaly. 

• A route is a good route if 80% of the tuples belonging 
to the same route has successfully followed the stream 
data flow of all transitions. Otherwise, a route is 
considered an anomaly. 

In our Smart Transit Scenario, a good trip and a good route 
also indicate that their tuples provide reliable and complete 
information about such a trip and route. This plays an 
important role in the quality assurance of the outputs of the 
automated tasks. 

Our DPN model is a generic model that can allow us to 
capture the stream behaviour of the traces in the event log, 
from the time a tuple arrives at a transition running at an 
edge node until the tuples are ready to be sent to the cloud. 
It can also allow us to capture billions of traces that might 
not been expected. Finally, process mining can help us to 
match the transitions and places, the data contained in them, 
and the patterns built by modelling the sequence of 
transitions within an automated task. Therefore, the PM 
approach is discussed in detail in next section. 

6 How IoT data streams are actually flowing 
between automated tasks? 

Our main goal is to extract patterns about path deviations, 
detect the presence of bottlenecks, point out process 
constrains, and find out whether the flow has had an impact 
on the performance of the tasks. Each raw tuple is modelled 
as a case in the event log. The updated and new tuples are 
also modelled as a case that took place according to the 
different tuple states as previously described in Table 2. 
Each case within the event log refers to a transition 
triggered to perform an automated task, and it is related to a 
specific trip that occurs at a particular timestamp. The cases 
belonging to the same trip are seen as one trace. And finally, 
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each trace describes the life-cycle of a specific trip in terms 
of the executed automated tasks. 

Figure 4 Process mining overview (see online version  
for colours) 

 

In our DPN model, the execution of automated tasks is 
known as a control-flow. The PM technique being used here 
was first proposed by Leoni and van der Aalst (2013), and it 
consists of four steps. Figure 4 illustrates the four steps that 
can be described as one of the following: 

Step 1 Create an event log. 

Step 2 Compute the control-flow of the discovered DPN. 

Step 3 Combine the control-flow model from the previous 
step and the event log. 

Step 4 Verify whether the DPN is an accurate 
representation of the control-flow, according to the 
real behaviours observed in the event log. 

The event log creation (step 1) refers to creating a CSV file 
formatted as a common table. Every row in the table 
represents a case within the event log, whereas the columns 
are the variables that describe these cases; such as tuple 
identification number, action name, timestamp, resource, 
and others. Among the all the variables, only three of them 
are mandatory for the process mining. These are the tuple 
identification number, the transition name, and the 
timestamp columns. The tuple identification number is a 
unique number that every tuple receives (i.e., case id). It is 
used to make reference to a specific tuple while it is flowing 
through the different automated tasks. The transition name 
has information about the actual action taken to execute a 
particular transition (i.e., receiving tuples, eliminating 
tuples, normalising tuples, etc.). Finally, the timestamp sets 
the date and time in which the transitions take place. The 
computation of the control-flow (step 2) consists of making 
use of available algorithms, such as alpha algorithm, to 
draw a visual version of the observed stream behaviour 
within the event log. 

Step 3 combines the control-flow model obtained in 
Step 2 with the original event log. Four quality dimensions 
are used for comparing the model and the event log.  
These dimensions are fitness, simplicity, precision and 
generalisation (van der Aalst, 2011). Fitness means the level 
of freedom that the model allows for representing most of 
the behaviour seen in the event log (van der Aalst, 2011; 

van der Aalst, 2014). Simplicity refers to the level of 
complexity infer from the model built. The precision and 
generalisation dimensions are other important aspects of 
process mining because they provide information about how 
a model is over fitting the data (i.e., extremely general) or 
underfitting the data (i.e., extremely precise). Finally, step 4 
applies the conformance checking approach that is available 
as a plug-in of ProM6 (Verbbek et al., 2012). The 
implementation for the smart transit scenario is explained in 
detail in the following section. 

7 Implementation and discussion of results 

The IoT data streams were real-time transit feeds of route 
51 provided by the CODIAC Transit System of the City of 
Moncton, New Brunswick. An edge node was deployed 
inside three bus vehicles of the route 51. The edge nodes 
were IR829GW edge nodes which belong to the Cisco 829 
series and they were selected because they can support a 
wide variety of applications including fleet management, 
mass transit, and remote asset monitoring. They also offer 
five main advantages as described as one the following 
(Data Sheet: Cisco 809 Industrial Integrated Services 
Routers, 2017): 

• compact form and size 

• multimode compatibility with diverse WAN 
technologies 

• high scalability implementation 

• resistance to humidity as well as a wide temperature 
range (–40°C to +60°C and type-tested at +85°C for 16 
hours) 

• routers are shock and vibration resistant 

• edge computing capabilities, where computing tools 
can be installed as micro services. 

This edge node handles all routing, switching and 
networking traffic using IOx operating system running on a 
virtual machine that uses Linux Yocto. The IoT data 
streams are fetched using the Gateway Management Module 
(GMM) and Data Control Module (DCM) which are the 
main modules of the Cisco Kinetic platform. This platform 
is a scalable, open system, adaptable for a variety of IoT 
applications that is used to extract, compute, and move the 
IoT data streams (Figure 5). 

The transit feeds were transported from the devices to 
the edge nodes using the available 3G network. The four 
automated tasks were running using a script code written in 
Python version 2.7.14 at the edge node due to its available 
light libraries and high-level general-purpose programming 
(Cao and Wachowicz, 2018). The automated tasks have 
generated five outputs as CSV files. These tasks consist of 
nine transitions ranging from A: receiving tuples to I: 
computing the observed duration of the trip. See Table 2 for 
an overview of the transitions. 
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Figure 5 Edge node architecture (see online version for colours) 

 

For creating an event log of the observed stream behaviour 
that belongs to the data ingestion, data cleaning, and data 
contextualisation tasks (i.e., A: receiving tuples, B: 
eliminating tuples, C: normalising tuples, D: grouping 
tuples, E: sorting tuples, and F: computing move/stops), we 
have combined the content of the first three CSV output 
files. The remaining CSV output files were merged to build 
another event log of the observed stream behaviour that 
belongs to the aggregation task (i.e., G: computing total 
number of stops per trip, H: computing total number of 
moves per trip, and I: computing the observed duration of 
the trip). The first event log file size exceeded 1 million 
cases, and the second log file size was in the range of 
150,000 cases. 

It is important to point out that since the IoT data 
streams have tuples with 17 variables, only three main 
variables have been standardised for the process mining 
(Figure 6). They are Case ID, transition name, and time for 
the event logs. In our DPN model, the Case ID is the Tuple 
ID. Depending on the granularity, and/or the context level 
we want to analyse, the Case ID may be exchanged by the 
Route ID or the Trip ID attribute. The action name is 
represented by variables that describe the analytical task 
being performed. The time column is the timestamp. 

We have used ProM6 (Verbbek et al., 2012) and Disco 
Fluxicon Co. (Rozinat, 2018) for the implementation. The 
ProM6 toolkit is a generic open-source framework with a 
high scalability. It has processing capabilities that allows us 
to work with event log files containing more than one 
million cases, assuring a processing time of milliseconds. 
Disco Fluxicon Co does not have restrictions of file sizes 
neither. It allows files with more than one million cases. 
However, some limitations of these tools are related to the 
available plug-ins (i.e., algorithms for modelling the event 
log files), the restrictions to configure them, and the type of 
output they delivered (Verbeek, 2012; Verbeek et al., 2012). 
For example, the file format required by the ProM6 and 
Disco Fluxicon Co tools is not the CSV data format. The 
Disco Fluxicon Co outputs, with a xes.gz file format, 
represent the ProM6 inputs that are necessary to start with 
the process mining performed by ProM6. Therefore, some 
additional steps have been performed to generate the event 
logs having the appropriate format. These steps were carried 
out manually, therefore we cannot assure that the event log 
does not contain human errors which can have a negative 
impact on the accuracy of observed behaviours. More 
research is needed to study how errors can be detected in 
event logs. Figure 7 illustrates the observed behaviour 
patterns that belong to the data ingestion, data cleaning, and 
data contextualisation tasks. It reveals the occurrence of a 
path deviation during the data flow between the data 
ingestion and data cleaning tasks. In fact, the expected 
behaviour was that all cases after being normalised would 
have been grouped according to their respective routes. 
However, there were 22,329 cases that have been directly 
flown from the transition C: normalising tuples to the 
ending marking point of our DPN model, and after sent to 
the cloud without being contextualised and aggregated. This 
path deviation could have happened, either by unknown 
conditions in the algorithm. Further an in-depth analysis is 
required to determine the main reasons behind this observed 
stream behaviour. 

Figure 6 Event log composition (see online version for colours) 
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Figure 7 Process mining results (see online version for colours) 

 

Another path deviation has occurred during the transition B: 
eliminating tuples of the cleaning task. In this case, half of 
the original number of cases were eliminated, which was 
much higher than expected. Thus, an investigation was 
carried out to identify the causes of such a behaviour. It was 
found that due to network failures, the tuples generated by 
the IoT devices have been duplicated and many missing 
values were also found. In particular, IoT data streams are 

usually noisy and incomplete, making them more 
challenging to conform to an expected stream behaviour. 

Figure 8 reveals a parallelism among three transitions 
that have occurred during the data aggregation task. This 
kind of stream behaviour was not expected since these 
transitions were modelled as a sequence of actions. This 
behaviour has also exposed an important logical problem 
with the algorithm used for the execution of the aggregation 
task. For example, the total trip time was computed for only 
352 trips for bus line 51, since more cases were classified as 
stops than moves. We were able to infer that more than 
57.8% of cases were classified as stops during the 
aggregation task, whereas 42.2% were classified as moves. 
The output of this automated tasks has generated 145,288 
cases which were later sent to the cloud. There is a high 
probability that a significant number of trips were not 
computed during the aggregation tasks.  

Figure 9 illustrates four snapshots of the stream data 
flows that were observed during the execution of the 
transitions. In total, eight bottlenecks have emerged during 
the execution of five transitions. The first bottleneck took 
place due to a delay of the input cases for the execution of 
the transition C: normalising tuples [Figure 9(a)]. This 
indicates that the time spent to execute this transition was 
significant longer than the time used for the event windows. 
The second bottleneck was a consequence of the first 
bottleneck since the following transition D: grouping tuples 
experienced a delay in its input cases as well as in its output 
cases [Figure 9(b)]. This cascade effect was further 
observed in the next transition E: sorting tuples as shown in 
Figure 9(c). And even during the execution of the parallel 
transitions of our aggregation task, the bottleneck has 
persisted to occur as shown in Figure 9(d). These process 
mining results demonstrate the important role of DPN 
models in identifying bottlenecks issues with algorithms 
that are being developed for IoT data streams. Ideally, an 
automated analytical workflow should support flexible data 
rates to make sure any relevant tuple has arrived at an 
automated task at the right time. 

Figure 8 Process mining results for the three transitions of the aggregation task (see online version for colours) 
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Figure 9 Bottlenecks observed during the execution of the transitions (see online version for colours) 

 

Figure 10 Misalignments observed during the execution of the transitions (see online version for colours) 
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Figure 11 Conformance-checking results observed during the execution of the transitions (see online version for colours) 

 

 
The total number of traces registered was 337,940  
[Figure 10(a)]. The misalignments observed in our DPN 
model were exceptionally revealing since the transitions of 
receiving and eliminating tuples were aligned, meanwhile 
the remaining transitions were misaligned [red transitions in 
Figure 10(b)]. In general, misalignments are expected to 
occur while complex automated analytical tasks are being 
executed. The minimal alignment percentage was 29%, 
whereas the average and median alignment percentages 
were 66% and 75%, respectively as shown in Figure 10(c). 
We believe that these misalignments might have occurred 
due to the cascade bottleneck effect that has taken place. 

More research is needed to identify the causes for 
misalignments in IoT data streams. Additionally, in order to 
understand the behavioural patterns of cases and their 
deviations, we suggest that the observing deviation on a 
specific transition of an automated task could be only a true 
deviation if the percentage of alignment for that specific 
action is above 75% (i.e., the median alignment percentage). 
Therefore, our assumption is that if the percentage of 
alignment is below of such a limit, the behavioural 
deviation of cases will be the result of misalignments in the 
transitions, rather than to be a true deviation in the patterns 
of the cases. Thus, an important part of a PM for streaming 
analytics is to align as much as possible all transitions of 
automated tasks. 

Finally, Figure 11 shows that all transitions in the 
process discovery that were misaligned have successfully 
passed a conformance checking. In this case, the function of 
the conformance checking was used to determine that the 
alignments were successfully performed since the minimal, 
average, median, and maximal fitness percentages have 
reached 100%. 

8 Conclusions and future research 

A real-world smart transit scenario was used to explore 
process mining for uncovering the actual behaviour of IoT 
data streams when executing streaming analytics in edge 
computing. The results from this learning process have 
uncovered the limitations of computational resources and 
algorithms designed for the execution of automated 
analytical tasks. We have observed two main path 
deviations that have indicated that 6.6% of the total number 
of cases followed a different path from the one expected. On 
the other hand, the constraint of one single transition has 
actually eliminated 50% of the raw tuples generated from 
the IoT devices. This is an unacceptable data flow 
behaviour in streaming analytics, mainly because it hinders 
the extraction of valuable information from the internet of 
things (IoT). This behaviour has emerged due to poor 
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connectivity conditions between IoT devices and edge 
nodes in our smart transit scenario. 

Several bottlenecks patterns were further observed 
during the process mining. They have occurred during the 
transitions nodes C: normalising tuples, D: grouping tuples 
and E: sorting tuples. The algorithms were modified in 
order to avoid these bottlenecks in the future. We also seek 
to create new event logs that will include other transitions in 
a smart transit scenario. Specially, it would be important to 
have a stringer control of the tasks in which the bottlenecks 
have occurred. Finally, we would like also to explore the 
potential use of DPNs in other real-world scenarios. 

Regarding the scalability of the tools used, there is a 
trade-off between the size of event logs and the new insights 
emerging from them. Even though there are no size 
restrictions for an event log, a time-consuming processing 
step is required in order to generate an event log from IoT 
data streams. The reformatting of the original tuples into the 
ProM format is not a straightforward step. Large volume of 
event logs will play a role in discovering more patterns and 
unknown behaviours in edge computing. 

References 
Adam, N.R., Atluri, V. and Huang, W.K. (1998) ‘Modeling and 

analysis of workflows using Petri Net’, Journal of Intelligent 
Information Systems, Vol. 10, No. 2, pp.131–158. 

Adriansyah, A., vaDongen, B.F. and van der Aalst, W.M.P. (2011) 
‘Conformance checking using cost-based fitness analysis’, 
Proceedings of IEEE International Conference on Enterprise 
Distributed Object Computing, Helsinki, Finland. 

Al Ridhawi, I., Kotb, Y. and Al Ridhawi, Y. (2017) ‘Workflow-net 
based service composition using mobile edge nodes’, Journal 
of IEEE Open Access, volume 5, Special Section on Mobile 
Edge Computing, pp.23719–23735, DOI: 
10.1109/ACCESS.2017.2766068. 

Appice, A. and Malerba, D. (2016) ‘A co-training strategy for 
multiple view clustering in process mining’, Journal of IEEE 
Transactions on Services Computing, Vol. 9, No. 6, pp.832–
845, DOI: 10.1109/TSC.2015.2430327. 

Atzori, L., Iera, A. and Morabito, G. (2010) ‘The internet of 
things: a survey’, Computer Networks, Vol. 54, No. 15, 
pp.2787–2805. 

Badalotti, F., Espindola, J.C., Schwanke, D., Petry, G., Nieto, C., 
Bove, M. and Barbosa, A. (2018) ‘RFID technology as a life 
cycle management tool in the liquefied petroleum gas 
industry’, Journal & Magazines of IEEE Latin America 
Transactions, Vol. 16, No. 2, pp.391–397, DOI: 
10.1109/TLA.2018.8327391. 

Bendoukha, S., Moldt, D. and Wagner, T. (2013) ‘Enabling 
cooperation in an inter-cloud environment: an agent-based 
approach’, Proceedings of IEEE 24th International Workshop 
on Database and Expert System Applications, pp.217–221, 
Los Alamitos, CA, DOI: 10.1109/DEXA.2013.27. 

Caesarita, Y., Sarno, R. and Sungkono, K.R. (2017) ‘Identifying 
bottlenecks and fraud of business process using alpha ++ and 
heuristic miner algorithms (case study: CV. 
WicaksanaArtha)’, Proceedings of IEEE 11th International 
Conference on Information & Communication Technology 
and System (ICTS), pp.143–148, Surabaya, DOI: 
10.1109/ICTS.2017.8265660. 

Cao, H., and Wachowicz, M. The design of an IoT-GIS platform 
for performing automated analytical tasks. Computers, 
Environment and Urban Systems, 74, 23-40, 2019. DOI: 
10.1016/j.compenvurbsys.2018.11.004 

Data Sheet: Cisco 809 Industrial Integrated Services Routers 
(2017) C78-734980-03 05/17, Cisco USA, pp.1–17. 

Fernández-Caramés, T.M. and Fraga-Lamas, P. (2018) ‘A review 
on human-centered IoT-connected smart labels for the 
Industry 4.0’, Journal of IEEE Open Access (Early Access), 
pp.1–19, DOI: 10.1109/ACCESS.2018.2833501. 

Garrido-Hidalgo, C., Hortelano, D., Roda-Sanchez, L., Olivares, 
T., Ruiz, M.C. and Lopez, V. (2017) ‘IoT heterogeneous 
mesh network for human-in-the-loop challenges towards a 
social and sustainable Industry 4.0’, Journal of IEEE Open 
Access Class Files (Early Access), Vol. 14, No. 8, pp.1–20, 
DOI: 10.1109/ACCESS.2018.2836677. 

Gcaba, E. and Dlodlo, N. (2016) ‘The internet of things for South 
African tourism’, Proceedings of IEEE International 
Conference on the IST-Africa Week, Durban, South Africa, 
DOI: 10.1109/ISTAFRICA.2016.7530573. 

Gonzalez del Foyo, P.M. and Silva, J.R. (2008) ‘Using time petri 
nets for modeling and verification of timed constrained 
workflow systems’, Proceedings of ABCM Symposium Series 
in Mechanics, Vol. 3, pp.471–478, ABCM, Sao Paulo, Brazil. 

Hernandez, L., Cao, H. and Wachowicz, M. (2017) ‘Implementing 
an edge-fog-cloud architecture for stream data management’, 
Proceedings of the 2017 IEEE International Conference on 
Fog World Congress, Santa Clara, California, USA. 

Jagadeesh, R.P., Bose, C., Mans, R.S. and van der Aalst, W.M.P. 
(2013) ‘Wanna improve process mining results? It’s high time 
we consider data quality issues seriously’, Proceeding of 
IEEE Symposium on Computational Intelligence and Data 
Mining (CIDM), Singapore. 

Jeon, Y.J., Eun An, K., Lee, S.W. and Seo, D. (2018) ‘Improved 
durability of soil humidity sensor for agricultural IoT 
environments’, Proceedings of IEEE International 
Conference on Consumer Electronics (ICCE), Las Vegas, 
USA, DOI: 10.1109/ICCE.2018.8326223. 

Kapitanova, K., Son, S.H., Woochul, K. and Won-Tae, K. (2011) 
‘Modeling and analyzing real-time data streams’, Proceeding 
of 14th IEEE International Symposium on 
Object/Component/Service-Oriented Real-Time Distributed 
Computing (ISORC), Newport Beach, CA, USA, pp.91–98, 
DOI: 10.1109/ISORC.2011.21. 

Lee, Y.J. and Kim, E.K. (2015) ‘Smart device based power 
generation facility management system in smart grid’, 
Proceedings of 17th IEEE International Conference on 
Advanced Communication Technology (ICACT), Seoul, South 
Korea, DOI: 10.1109/ICACT.2015.7224919. 

Leoni, M. and van der Aalst, W.M.P. (2013) ‘Data-aware process 
mining: discovering decisions in processes using alignment’, 
Proceedings of the 28th Annual ACM Symposium on Applied 
Computing, pp.1454–1461, Portugal. 

Lohmann, N., Song, M. and Wohed, P. (2013) ‘Business process 
and management workshops’, Proceedings of the BPM 
International Workshop 2013, Vol. 127 of LNBIP, Springer,  
pp.72–76. 

Mastroianni, C., Cesario, E. and Giordano, A. (2017) ‘Balancing 
speedup and accuracy in smart city parallel applications’, 
Proceedings of Euro-Par 2016: Parallel Processing 
Workshops, Springer International Publishing AG, Lecture 
Notes in Computer Science (LNCS) 10104, pp.224–235, 
DOI: 10.1007/978-3-319-58943-5_18. 



28 L. Hernandez et al.  

McNeil, P. (2018) ‘Secure internet of things deployment in the 
cement industry: guidance for plant managers’, Proceedings 
of IEEE Industry Applications Magazine, Vol. 24, No. 1, 
pp.14–23, DOI: 10.1109/MIAS.2017.2739833. 

Petri, I., Rana, O., Bignell, J., Nepal, S. and Auluck, N. (2017) 
‘Incentivizing resource sharing in edge computing 
applications’, Proceedings of International Conference on the 
Economics of Grids, Clouds, Systems, and Services, Springer 
International Publishing AG, Lecture Notes in Computer 
Science (LNCS) 10537, pp.204–215. 

Prabhakara, R., Bose, J.C. and van der Aalst, W.M.P. (2010) 
‘Trace alignment in process mining: opportunities for process 
diagnostics’, Proceedings of 8th International Conference, 
and Business Process Management Publications, Hoboken 
NJ, USA, DOI: 10.1007/978-3-642-15618-2_17. 

Pulsanong, W., Porouhan, P. and Tumswadi, S. (2017) ‘Using 
inductive miner to find the most optimized path of workflow 
process’, Proceedings of IEEE fifteenth International 
Conference on ICT and Knowledge Engineering. pp.1–5, 
Bangkok, DOI: 10.1109/ICTKE.2017.8259633. 

Ramesh, M.V., Nibi, K.V., Kurup, A., Mohan, R., Aiswarya, A., 
Arsha, A. and Sarang, P.R. (2017) ‘Water quality monitoring 
and waste management using IoT’, Proceedings of IEEE 
International Conference on Global Humanitarian 
Technology Conference (GHTC), San Jose, CA, USA, DOI: 
10.1109/GHTC.2017.8239311. 

Reisig, W. (2013) Marked Graphs. In: Understanding Petri Nets, 
Springer, pp.163–167, Berlin, Heidelberg, DOI: 
https://doi.org/10.1007/978-3-642-33278-4_18. 

Rozinat, A. (2018) Disco User’s Guide, pp.1–10, Disco Fluxicon 
Co. 

Ruengittinun, S., Phongsamsuan, S. and Sureeratanakorn, P. 
(2017) ‘Applied internet of thing for smart hydroponic 
farming ecosystem (HFE)’, Proceedings of 10th IEEE 
International Conference on Ubi-media Computing and 
Workshops (Ubi-Media), Thailand, DOI: 10.1109/ 
UMEDIA.2017.8074148. 

Sharma, Y., Mathew, M. and Yanamandram, K. (2017) 
‘Enhancement of the biogas system application using solar 
photovoltaic and IoT based automation’, Proceedings of IEEE 
International Conference on Intelligent Computing, 
Instrumentation and Control Technologies (ICICICT), 
Kannur, India, DOI: 10.1109/ICICICT1.2017.8342676. 

Spiteri Staines, A. (2016) ‘Modelling simple network graphs using 
matrix vector transitions net’, International Journal of 
Computers and Communications, Vol. 10, pp.11–17, ISSN: 
2074-1294. 

Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H. and Yang, Q. 
(2015) ‘A hierarchical distributed fog computing architecture 
for big data analysis in smart cities’, Proceedings of the ASE 
Big Data & Social Informatics, ACM. 

Tolosana-Calasanz, R., Diaz-Montes, J., Rana, O. and Parashar, M. 
(2014) ‘Extending cometcloud to process dynamic data 
streams on heterogeneous infrastructures’, Proceedings of 
IEEE International Conference on Cloud and Autonomic 
Computing, pp.196–205, London, DOI: 10.1109/ICCAC. 
2014.22. 

van der Aalst, W.M.P. (2013) ‘Process cubes: slicing, dicing, 
rolling up, and drilling down event data for process mining’, 
Asia Pacific Conference on Business Process Management 
(AP-BPM 2013), Volume 159 of Lecture Notes in Business 
Information Processing, pp.1–22, Springer-Verlag, Berlin. 

van der Aalst, W.M.P. (2014) Extracting Event Data from 
Databases to Unleash Process Mining, BPM Center Report 
BPM-1410, BPMcenter.org. 

van der Aalst, W.M.P.(2011) Process Mining – Discovery, 
Conformance and Enhancement of Business Processes, 
Springer-Verlag, Berlin, Heidelberg. 

van Hee, K., Oanea, O., Post, R., Somers, L. and van der Werf, 
J.M. (206) ‘Yasper. A tool for workflow modeling and 
analysis’, Proceedings of the Sixth International Conference 
on Application of Concurrency to System Design (ACSD 
2006), IEEE Computer Society, Washington, DC, pp.279–
282. 

Verbbek, H.M.W., Buijs, J.C.A.m., van Dongen, B.F. and van der 
Aalst, W.M.P. (2012) ‘XES, XESame, and ProM 6’, 
Proceedings of Business Process Management Workshops, 
Vol. 99 of LNBIP, Springer Verlag. 

Verbeek, H.M.W. (2012) ‘ProM6 Tutorial’, Proceedings of 
promtools.org. 

Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F. and van der 
Aalst, W.M.P. (2012) ‘ProM6: the process mining toolkit’, 
Proceedings of ceur-ws.org, Vol. 615, No. 13, pp.1–6, 
Eindhoven University of Technology, The Netherlands. 

Workcraft.org, Modeling with Signal Transition Graphs: 
Distributed Mutual Exclusion, Workcraft Tutorial in 
Modelling [online] https://workcraft.org/tutorial/modelling/ 
stg/start (accessed 2 October 2019). 

Xie, Z., Han, L. and Baldock, R. (2013) ‘Augmented petri net cost 
model for optimisation of large bioinformatics workflows 
using cloud’, Proceedings of IEEE European Modelling 
Symposium (EMS), Manchester, pp.201–205, DOI: 
10.1109/EMS.2013.35. 

Zhang, X., Zheng, H. and Liu, Y. (2012) ‘A petri net based 
context-aware workflow system for smart home’, 
Proceedings of IEEE 26th International Parallel and 
Distributed Processing Symposium Workshops & PhD Forum 
(IPDPSW), pp.2336–2342, Shanghai, DOI: 10.1109/ 
IPDPSW.2012.287. 

Zheng, H., Wang, Y. and Zhong, W. (2012) ‘Analysis of the 
digital home wireless meter reading interface execution 
process’, Proceedings of the IEEE Second International 
Conference on Cloud and Green Computing, pp.614–620, 
Xiangtan, DOI:10.1109/CGC.2012.107. 


