Modelling and energy efficiency analysis of a hybrid pump-controlled asymmetric (single-rod) cylinder drive system
by Huankun Wang; Paul G. Leaney
International Journal of Hydromechatronics (IJHM), Vol. 3, No. 1, 2020

Abstract: A conventional valve-controlled cylinder drive system is not energy efficient, and a pump-controlled cylinder system can be unstable in some particular conditions. For drive systems not requiring fast response, a hybrid pump-controlled system, that combines the advantages of both valve and pump-controlled systems, is proposed. As nonlinear behaviours are inevitable in most asymmetric cylinder drive systems, the hybrid pump-controlled system also suffers from such problems, and extra nonlinear behaviours are identified, for example, stall when the cylinder change its direction of motion. A simulation model of the hybrid pump-controlled asymmetric cylinder drive system is developed and used to investigate the system's simulation behaviours which are analysed and compared with the experimental test results. The energy efficiency of the hybrid pump-controlled system is compared with a comparable valve-controlled hydraulic system with the same hydraulic cylinder sizing. The outcome is to demonstrate the advantage of the hybrid pump-controlled system in energy-saving aspect, and the efficiency of the hybrid system is up to five times more than a conventional hydraulic system. Suggestions are given to improve the performance and stability of the hybrid pump-controlled system.

Online publication date: Mon, 02-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com