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Abstract: Robotic fish design is an upcoming and interesting research area 
with lot of challenging tasks due to the impulsive dynamics of water space. In 
this paper an evolutionary computational approach is performed to design 
caudal fins under carangi form and sub-carangi form swimming modes. Size 
and Shape with SOLEIL and multi-body evolutionary experiments were carried 
out using Euler-Lagrangian equation-based BhT tool to experiment and 
validate the hydrodynamic effects of caudal fin by avoiding complex and time 
consuming CFD simulations to achieve realistic motion. To improve average 
velocity of robotic fish two approaches have been suggested, one is a hill 
climbing algorithm to find optimal shape with standard stiffness whereas the 
second approach considers both shape and stiffness together in a genetic 
algorithm. Finally simulated fin models are compared against physical models 
to identify the correlation and performances of both to accurately approximate 
real world performances in a simulated environment leading to design 
optimised caudal fins for robotic fish. 
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1 Introduction 

Motivated by Mother Nature, robotic experts have designed models as adept and capable 
as natural fish swimming. However bio-mimetic robots are not as skilful as their 
biological equivalents due to the resources involved in building robotic fish to work 
similar to organic tissue. Yet, robotic fish has several benefits when compared with 
propeller-driven underwater vehicles. First, with few moving components and extra space 
for sensors with reduced power consumption. Then, a real-life like exterior may be 
pushing the system in to its natural bionetwork in terms of appearance. Given uniqueness 
such as above, it has been extended in environmental monitoring to biological life study 
applications. 

The key problem in developing robotic fish can be the field vagueness, as the marine 
environment is exceedingly nonlinear, with highly demanding and having complicated 
design process. Because of this, hydrodynamic interactions performed with mathematical 
models tested in such environments can provide better design process by means of test 
design. Still with an ideal numerical model, the design process hangs with dispute in 
terms of bulky number of parameters concerned towards sensible motion.  
Electro-mechanical components and their materials with constraints will have different 
performances and also requires information regarding the properties of materials used. To 
construct a flexible caudal fin elasticity coefficient of material must be known and it 
would be fine to have an automated design process capable of handling  
high-dimensionality. Evolutionary computational techniques are well suited for problems 
with high dimensionality where the solution space is sampled to bring certain aspects of 
exclusive solutions in creating efficient mixtures. To identify effective and novel 
solutions we can integrate mathematical model during evaluation phase to track the 
peculiarities of an aquatic environment. These kinds of solutions allow the designers to 
have complete idea about excellent robotic fish design. 

Here we put forward an evolutionary method to design caudal fin of a robotic fish. 
Optimisation takes place in a rigid multi-body dynamics using mathematical model with 
respect to hydrodynamics of linked caudal fin. Then solutions which were simulated are 
compared to predictions brought by mathematical model in such a way that the stiffness 
coefficient of a fin with fixed shape is optimised using hill-climber algorithm, and the 
fitness landscape is also compared against the derived model. To validate the results, set 
of fins are made and then tested over robotic fish prototype in an aquatic environment. To 
finish the optimisation process involving physical characteristics of the caudal fin an 
optimisation algorithm is used which specifically deals with stiffness and dimensions of 
caudal fin concurrently evolved against given control pattern. The task is about deploying 
evolutionary design involving present-day dynamic models which can be personalised 
into all-purpose engineering process under robotics. 
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2 Background work 

Robotic fish has plenty of applications such as studying natural fish morphology and 
behaviour at fish aquarium and environmental monitoring such water pollution, etc. It 
allows the researchers to reproduce with control to evaluate the behaviour of real fish 
Faria et al. (2010), or in learning natural evolution and other biological assumptions 
referred by Long et al. (2011, 2006). More recently Marras and Porfiri (2012) and  
Raja Moahemd and Raviraj (2015) robotic fish have shown that tethered robot with 
moving caudal fin able to form schooling behaviour similar to natural fish inside tank. 
When the tail fin was not moving, then natural fish did not react for schooling to support 
the assumptions that a bio-mimetic robot can aid in reading behavioural aspects. As 
vindicated by the preceding one, fish can act together with a realistic robot like a natural 
fish. With more and more refined designs, insight into fish actions can be taken to solve 
problems by observing biological fish in natural or a fixed lab atmosphere stated in  
Raja Moahemd and Raviraj (2011). At the same time robotic fish was also used to 
observe underwater activities like oil spill surveying detection, etc. by Wang et al. 
(2011). As it appears similar to natural fish mobile sensor can be placed to observe 
ecosystems without interference. 

Bio-inspired technique in the sense design and fabrication of fin extracted from nature 
for modelling in accordance to nature stated by Masoomi et al. (2013). Two major types 
of swimming locomotion (anguilliform, carangiform) require specific mathematical 
model to exactly illustrate the dynamics of motion. A ribbon-like fin with a cord of 
actuators coupled by soft material has been shown and also capable of replicating the 
force of real fins used by Epstein et al. (2006). Further, research work of Chen et al. 
(2010), Hu et al. (2009) and Tan et al. (2010) gives insight into carangiform locomotion, 
where the forward thrust is mainly generated by the tail or caudal fin. Recently, a 
mathematical model was proposed to cover multiple aspects of locomotion pertaining 
bendable carangiform mode of swimming (Wang et al., 2011). 

Virtual creatures created based on Morphological evolution have been the focus in 
bringing real outlook. They key obstacle in any simulation-developed solution is about 
transformation of physical robot from data. There is a reality-gap for solutions that are 
working well during simulation may face issues such as improper modelling or out of the 
blue glitches in physical environment. To deal this problem, Bongard and Lipson (2004) 
simulator model is evolved concurrently with robotic fish and openly accepting solutions 
for similar performances in reality by comparing with simulation listed in Swarnamugi  
et al. (2016). In the latter, solutions having higher transferability are considered as fit. To 
narrow the gap further, accurate models are deployed for exclusive environmental 
conditions. Earlier, Gomez and Miikkulainen (2003), for instance, they demonstrated that 
an exhaustive simulator working in tandem alongside evolutionary algorithm to produce 
controllers for finless rockets operating in dynamic environment. In the recent past reality 
gap extended to contain material properties and their reaction to explicit environmental 
situation pointed by Saxena and Chauhan (2017). 

As a fact that modelling such connections at the very low level are at the moment is 
difficult. Here the approach is to put together evolutionary computation and mathematical 
modelling of material with properties. Evolutionary computation steers the overall 
procedure; engineering is required to model behaviour of essential resources when 
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dynamic forces are applied, enabling near perfect assessment of the robot during 
simulation according to Anu Priya et al. (2015). 

3 Methodology 

SOLEIL is an extended integral equation solver for shape and size optimisation. Then 
BhT to simulate vortex free rigid-body dynamics based on ordinary differential equations 
to analyse the interaction multi-body segments with fluid. In addition, to guarantee the 
significance of results it was tested in SOLEIL against fins that were tested on a robotic 
fish prototype with varying number of segments from 1 to 3. 

3.1 Mathematical model 

With the help of rigid-body dynamics, movement of caudal fin can be estimated by 
dividing the flexible fin into discrete segments coupled by relays with flexible movement. 
Yet, the fluidic movement of a fin during locomotion is tough to model in simulation and 
difficult to imitate on a physical robot too. James Lighthill’s (1971) theory of 
Locomotion for elongated body was proposed to realise fish locomotion as a sequence of 
flexible segments and their movement at any given point can be estimated using 
equations resulting thrust and movement of the same. 

Figure 1 Effect of dynamic forces over passive flexible caudal fin segments (see online version 
for colours) 

 

Basically three different fin shapes have been considered in our testing. To calculate the 
dynamic forces generated by various fins based on improved Lighthill’s theory, Wang  
et al. (2012) divided the caudal fin segments of equal-size and evaluated forces 
independently against each of them by considering extra forces acting at the tip. These fin 
segments are assumed to be connected through a sequence of relays forming a flexible 
body and fin structure with respect to Lighthill’s elongated body mathematical model. 

In Figure 1 body segments are shown along with the forces acting against individual 
regions. Each segment produces couple of forces; one is a resistive and the other is 
propulsive component in accordance with mathematical model. Equation (1) describes 
the hydrodynamic force act against each segment. 
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 ( ) ( ), ( ) ( / )( )x yf t f t f t m d dt v n      (1) 

In equation (1), m refers unit length mass, t points out the position where the force acts 
over the fin, and n  denotes unit direction and v denotes velocity at right angles to the 
fin. Then extra force at the tip of last segment is computed by equation (2): 

   2, 1/ 2l lx ly t lf f f mv m mv vn         (2) 

where t = l represents the backside end of fin, where m  refers the unit direction, v refers 
velocity acting parallel to fin. By giving x and y coordinate values of each fin segment at 
time to calculate hydrodynamic forces. 

Each fin segment is attached to the body through relays which creates periodic 
motion in a sinusoidal mode. Then parameters such as amplitude, frequency are set for 
the same using various delay and sweep angles, including the material’s dimensions, 
Young’s modulus of elasticity to determine flexibility for the relays and joints also 
included in the parameter list. This correlation helps us to transfer simulated designs into 
physical materials using known and incidental properties. 

3.2 Suitable simulation environment 

An environment to face the unique challenges with respect to modelling the hydro 
dynamics of an aquatic surrounding, BhT and SOLEIL are used for 2D and 3D 
simulation of mathematical model to compute hydrodynamic forces at the end of caudal 
fin. It avoids complex and lengthy time consuming computational fluid dynamics 
calculations and the reduction in computational time is profitable especially in the case 
number of tests for best solution through simulation. The mathematical model restricts 
motion with in a 2D plane and assumes floating tendency without any outside forces. 

A robotic fish prototype is created from simulated data, to analyse the performance of 
fin having various dimensions and material having different stiffness values. Virtual 
model is shown in Figure 2, having main and three-segment caudal fin using BhT. Fin 
flexibility was estimated with inactive hinges fixed between segments run by time and 
sweep angles of relays. It allows the fin segment to bend at different rate of speed based 
on time and angular range of 15 degrees on either side as programmed. 

3.3 Physical finding 

To verify the outcomes of proposed method, fins were made-up with a variety of physical 
materials to generate flexible moves which is similar to simulation. Three basic fin 
models fabricated and connected to a robotic fish for evaluation. Figure 3 shows the 
physical robot with one type of fin attached to it 

To calculate the average velocity of each fin model time trials were used, while visual 
observations also help in determining the bending ability of fins during motion. During 
the trials, the height, length and thickness of each fin segment was fixed at 3.0, 4.0 and 
0.1 cm respectively. The Young’s coefficient of elasticity was taken from the data sheets. 
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Figure 2 Virtual fish model with a three-segment rigid-body using SOLEIL (see online version  
for colours) 

 

 

 
 

The prototype robot was positioned inside tank to reach a steady state swimming speed 
prior to computing average velocity using different fin size and shape. Stiffness of each 
fin segment is computed using equation (3): 

 3 12sK Edh l  (3) 

In which Ks denotes torsion spring constant of material, d refers height and l refers length 
of the fin segment. E denotes Young’s coefficient of elasticity and h denotes thickness of 
each fin segment. Obtained values from the above equation can be used straight away in 
simulation at some point in optimisation routines to produce an effectively equating 
simulation and physical results to maximum perfection level possible. 
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Figure 3 Prototype robotic fish with one type of caudal fin controlled using a servo motor(s) with 
a specific range of motion and oscillatory sweep angles for different segments  
(see online version for colours) 

 

4 Experiments and results 

This paper deals problem by dividing them in to three sections such as mathematical and 
physical model validation, followed by evolutionary optimisation. First simulation results 
were compared with data resulting from the mathematical model followed by comparison 
between simulation and physical data obtained from experiments were made. Finally 
after validating the simulation data, evolutionary computational technique was applied in 
designing process of flexible caudal fin. 

4.1 Comparing mathematical and simulation models 

Before proceeding to bodily validation and evolutionary experiments, we need to make 
sure that the simulation background should be set up for the mathematical model in 
achieving perfection. Any inequality between these two would imply faulty evolutionary 
results which are useless. By considering the above, couple of algorithms were engaged 
to get the optimised stiffness value for simulated system during which Young’s 
coefficient for flexibility alone was changed for both the experiments. 

Initial algorithm is a basic hill-climber with 100 independent runs and each run was 
started with a specific seed and Young’s coefficient value selected consistently between 
the range [0.5, 4GPa] randomly. Young’s modulus value was calculated by translating 
using Equation (3), to the joint coefficients that control caudal fin flexibility. After 
configuring the values of robot, it was allowed to swim for about ten seconds. 
Simultaneously fitness of the same for each Young’s coefficient was figured to achieve 
average velocity during evaluation period. Every time hill-climber algorithm begins with 
the evaluation of the arbitrarily selected initial Young’s coefficient value, succeeding 
values were generated by relocating the current one by a random number selected over 
and over again from a Gaussian distribution having mean value of 0 and variance of 0.1. 
The resultant Young’s coefficient value was evaluated, and the higher (better) average 
velocity value was set aside for the next test case to be produced. In each run, the process 
was iterated to have at least 100 candidate values to be evaluated. Every hill-climber 
occurrence converged to an optimum Young’s coefficient value of more or less 1.7 GPa, 
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and given some amount of time it is expected that remaining final values may converge at 
a single optimal value. 

Second one is a formal genetic algorithm with the primary target of confirming that 
the simulation environment is well suited work alongside evolutionary algorithm. It has 
30 free runs comprised as an experiment and each run was starting with a unique value 
and a collection of 100 randomly generated individuals. Each one tested similar to the 
one used in hill-climber test. After 100 generations, populations advance with mutation as 
the mere operator for evolution. Then by initialising population, successive generations 
were produced using three-individual contest like selection processes and a Gaussian 
mutation operator. In addition, to ensure holding on to better fitness value, the majority of 
10% of the population was deemed as privileged and passed on to the next generation 
without alteration. Evolutionary experimental result closely reminds the individual best 
fit cases of hill-climber in each run, with Young’s coefficient values around 1.6 GPa. 
Figure 4 shows the data obtained from mathematical model. Figure 5 shows the results of 
both simulation experiments in which hill climber and evolutionary approach yielding 
almost identical solutions. Though it is an anticipated result, both experiments need 
similar simulation environment. When we have a close look Figures 4 and 5, there is a 
difference involving model and simulation results which is very clear. In particular, the 
model forecasts max average velocity around 4.8 cm/s when Young’s coefficients sit 
around 0.7 GPa, whereas simulation results approach max average velocity closer to  
1.2 cm/s at a Young’s coefficients near 0.9 GPa. 

Figure 4 Mathematical model predicted velocities by assuming that the body is stable (see online 
version for colours) 

 

In spite of differences between both it shows the similar fashion, in which mid-way 
values of the Young’s coefficients turn out to be best and fast robotic fish. Further, the 
difference between the figures examined a bit closer with model and simulator. 
Interestingly with an assumption that the robotic fish body having no effect over caudal 
fin motion according to mathematical model as well as fin segment without mass. These 
two assumptions are not approved in the simulation environment, and they would cause 
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simulated one to look slower compared to model data prediction. In order to determine 
physically meaningful physical results, we need examine them in the proposed 
methodology. 

Figure 5 Determining the optimum stiffness of a fixed dimension fin with both hill-climber and 
evolutionary algorithm and they converged almost on a common stiffness values 
offering the highest average velocity (see online version for colours) 

 

4.2 Physical validation 

To authenticate cases taken from simulation, we have designed three different caudal fins 
with similar size and different shapes and tested the same with fish prototype. Unique 
stiffness values for fins under each model were created and the materials used were 
ranging from high to low flexibility. Each fin was attached to the prototype to measure 
the average velocity over 3 separate trials. The results of the above experiments are 
shown in Figure 6. Similar to the predicted values, it points out flexibility having highest 
average velocity in the intermediate level. But comparisons linking simulation and reality 
are not worthwhile due to boundaries of materials. In particular, the materials are not 
having specific Young’s coefficients value; rather the maker offering range of likely 
values for each material. 

Despite using fins of identical shape and size for their respective flexibility values the 
mathematical model, simulation, and physical data could make meaningful comparison. 
First, the physical and mathematical model velocity values are closer when compared to 
simulation results. The data composed from experiments will be helpful to improve the 
model and the environment of simulation. In addition, the optimal Young’s coefficient 
range is 1–2 GPa for most of the results obtained during experiment. The reason behind 
the gap in the model predictions are known, however it is also obvious that there is no 
match between simulation and reality. The maximum velocity achieved during the 
physical experiments is 3.7 cm/s is almost double that of simulation velocity. In the 
mathematical model estimations were made to fine tune simulation environment. 
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Distributed force over the body is treated as single point force, and the fin segments are 
split into three parts. Fin size is decreased relatively with respect to previous segment, 
and increase in the number of segments, the movement and separation of forces will be 
more practical and expected to increase the accuracy for simulation experiments. 
Alternatively the simulation and physical tests were observed for flexibility of fins during 
oscillation to measure its performance. 

4.3 Evolution of fin structure 

Once after contrasting numerical and simulation model results, process of optimisation 
was extended during evolutionary computation too. During this process Young’s 
coefficients and dimensions of a three different caudal fins were concurrently evolved. 
Further fin shape was permitted to evolve under the conditions that the length-height 
face, thickness and area o the fin remain fixed. Now the aspect ratio of the fin was not 
allowed to evolve and the Young’s coefficient and length of a fin to evolve. Practically 
various fin dimensions were taken into consideration with max length of 14 cm and min 
length of 4 cm forced during evolution. Anything that lies outside this range will have 
transferability issues with respect electromechanical constraints. Altogether 30 repeated 
test runs were performed to identify the correlation between parameters such as stiffness, 
shape, and average velocity of caudal fin. 

Figure 6 Average velocity for calculate for materials used to fabricate fins and flexibitiy 
decreases for towards x axis (see online version for colours) 

 

Optimum values in a set were found for both Young’s coefficient and dimensions of the 
fin from the evolutionary runs performed earlier in which Young’s coefficient found 
during trial run was 7.55 GPa, at which length and height of caudal fin was 14 cm and 
1.43 cm respectively. Consequently, the best solution reached the max fin length allowed 
with respect to fin width. As we expected such a result, longer the fin length higher the 
propulsive force, where as the fin width has lesser effect over the same. Equation (2) 
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exhibits the same property, where the longer fins having higher angular velocity close to 
the posterior part of fin as we increase the length in linear fashion. 

Interestingly Young’s coefficient value found during trial is larger than prior 
experiments, accordingly the stiffness of material is around 1.35 × 10–3 Nm for non trial 
cases, and 1.73 × 10–3 Nm for complete evolution based experiments. It also implies that 
using a constant stiffness value may be enough for varying caudal fin dimensions and 
shapes. Further, stiffness values are alike when the length is increased with the same done 
for Young’s coefficient to maintain rather than constant value. Here, Figure 7 depicts 3D 
fitness landscape obtained during the evolutionary experiment. Its peak is sited at a 
coefficient of elasticity around 7.5 GPa with 14 cm of length. These set of values 
produced an average velocity of 2.2 cm/s as Figure 7 suggests that for every set of 
dimensions there is a precise Young’s coefficient value that is associated with ultimate 
performance for a fin. 

Figure 7 Fitness landscape for various shape and stiffness values of caudal fins (see online 
version for colours) 

 

Notes: The height relies on length while determining shape, thus, height is ignored. When 
the fin length increases, the Young’s coefficient values also increases in order to 
preserve similar stiffness fins for different lengths. 

Highly challenging dynamics of an aquatic environment is making the design of robotic 
fish as demanding engineering attempt. Considering the complexity, it is really important 
to deploy design process that is automatic in choice using which parameters of fins can 
be optimised for exclusive cases and tasks. 

Adapting the hydrodynamic model for caudal fin design using automated simulation 
process helps in optimising Young’s coefficients determining the flexibility. During 
simulation optimum Young’s coefficient mainly relies on motion and dimension of fins. 
For a given set of attributes including frequency of fin sweep, amplitude, height, width 
and length there is a unique Young’s coefficient value being optimum. When the 
coefficient value was evolved together with fin shape, it found to be worthy as the values 
of length and Young’s coefficient having higher and producing faster swimming caudal 
fins. 



   

 

   

   
 

   

   

 

   

   30 S. Raja Mohamed and P. Raviraj    
 

    
 
 

   

   
 

   

   

 

   

       
 

5 Conclusions 

Here we have proposed an evolution based process to design caudal fin with the help of 
simulation tools, i.e., BhT and SOLEIL with suitable modification in which variety of 
configurations for fin to be tested. The simulation part uses mathematical model and 
rigid-body dynamics engine for flexible caudal fin’s hydrodynamics exclusively in an 
aquatic environment. To test the above, first hill-climber algorithm was used with a 
specific fin shape and control pattern, to find fitness region against stiffness and velocity. 
The results were compared to data produced by model, which helped us in confirming the 
simulation and the model with equivalent dynamics despite the absolute values seem to 
be different. Graph plotted against stiffness and velocity for simulation and mathematical 
model experiments have similar development in which average velocity was more for 
mid-way caudal fin flexibility is shown in fig.6. It also proves that certain important 
aspects related dynamics of fin can be captured for various materials. Then progression 
was made from hill-climber experiments to an evolutionary algorithm to optimise several 
fin parameters. Traditional genetic algorithm was in place to advance both the Young’s 
coefficient and shape of fins. After performing series of respective experiments, best fit 
fins happen to have lengthy fins with literally constant stiffness. Hence it is obvious that 
longer fins usually offer large amount of force towards propulsion. In addition, it also 
proved that each fin shape and control pattern has its own optimal Young’s coefficient 
value. The results obtained from simulation and physical experiments discussed here 
show the effectiveness of an evolutionary based approach with dimensionality. Still the 
work is not over as we can focus on improving the overall design process. Here 
assumptions related to the hydrodynamic model can be ignored say, the body segment 
will not be considered as static and the fins without mass followed by gradually reduce 
the constraints placed on evolution. Ultimately, several features of the robot can be 
evolved in a process which can be generalised to any non-linear robotic environment. 
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