
Int. J. Forensic Software Engineering, Vol. 1, No. 1, 2019 47

Prioritising test cases by collaborating artefacts of
software development life cycle

Md Saeed Siddik*
Institute of Information Technology,
University of Dhaka,
Dhaka, Bangladesh
Email: saeed.siddik@iit.du.ac.bd
*Corresponding author

Md Abdur Rahman
Centre for Advanced Research in Sciences,
University of Dhaka,
Dhaka, Bangladesh
Email: mukul.arahman@gmail.com

Kazi Sakib
Institute of Information Technology,
University of Dhaka,
Dhaka, Bangladesh
Email: sakib@iit.du.ac.bd

Abstract: Test case prioritisation reorders test cases based on faulty module
detection capability to detect maximum faults by minimum execution. Since
40% budget is allocated for software testing, prioritisation can reduce that
budget by early fault detection. In software development life cycle (SDLC),
faults are propagated to the connected phase and continuing until final
release, because every phase depends on its previous phase’s outcomes.
This motivation derived prioritisation approach by focusing collaboration of
different SDLC phases named requirements, design and code. Since, each of
the SDLC phase has its own impact on test case, unique priority constants are
assigned to every phase, which are used for constructing final priorities. The
proposed framework was experimented on different projects, and results have
been compared to several prominent schemes considering individual phase
of SDLC. On average, proposed collaborative approach performs 22.77%
and 29.01% better than individually requirements and source code based
prioritisation techniques respectively.

Keywords: regression testing; software development life cycle; SDLC;
requirement; test case prioritisation.

Reference to this paper should be made as follows: Siddik, M.S.,
Rahman, M.A. and Sakib, K. (2019) ‘Prioritising test cases by collaborating
artefacts of software development life cycle’, Int. J. Forensic Software
Engineering, Vol. 1, No. 1, pp.47–72.

Copyright © 2019 Inderscience Enterprises Ltd.

48 M.S. Siddik et al.

Biographical notes: Md Saeed Siddik have been working on software testing
and software analysis research where he experimented how software are
developed and tested efficiently. He has completed his MSc in Software
Engineering, including the highest marked thesis dissertation on software test
case prioritisation from the IIT University of Dhaka. He was the first research
student of IITDU Optimization Research Group, where he was working on
software design migration to enhance modularity and manageability. He is
also a member of IEEE, SIGSOFT, and a group advisor of IEEE CS SB at
the University of Dhaka.

Md Abdur Rahman received his BSc in Information Technology from the
Visva Bharati University, India in 2004. He has completed his Post Graduate
Diploma and his Master in Information Technology from the University of
Dhaka, Bangladesh in 2008 and 2009 respectively. He is a Senior Computer
Scientist in the Centre for Advanced Research in Sciences at the University
of Dhaka. His major research interest includes natural language processing,
machine learning, deep learning, big data analytics, and software engineering.

Kazi Sakib is a Professor at the Institute of Information Technology
(IIT), University of Dhaka, Bangladesh. He received his PhD in Computer
Science at the School of Computer Science and Information Technology,
RMIT University. His research interests include software engineering, cloud
computing, software testing, software maintenance, etc. He is an author of a
great deal of research studies published at national and international journals
as well as conference proceedings.

This paper is a revised and expanded version of a paper entitled
‘RDCC: an effective test case prioritization framework using software
requirements, design and source code collaboration’ presented at the 17th
International Conference on Computer and Information Technology (ICCIT),
IEEE, Bangladesh, 22 December 2014.

1 Introduction

Test case prioritisation reorders test cases for providing earlier feedback to software
testers and managers about faulty modules, which are exigent specially in regression
testing. This type of testing revalidates the modified software when new component
is included to adapt the change requirements which may adversely impact on existing
software. This revalidating procedure considers both old and new test cases to ensure
software functionalities, which is costly and time consuming (Rothermel et al., 2001;
Srikanth and Williams, 2005; Hasan et al., 2017). Therefore, various test case selection
techniques are introduced to improve regression testing efficiency which are categorised
as test suite reduction, selection and prioritisation (Rothermel et al., 2001). Although
reduction and selection reduce regression testing reliability by omitting test cases,
whereas prioritisation selects the appropriate set in terms of fault detection without
omitting any test cases. In prioritisation schemes, priority values are assigned to all test
cases based on their accuracy of fault detection. Test cases are prioritised before the
software release using related information such as requirements, source code, etc. Since,

Prioritising test cases by collaborating artefacts 49

testing is a vital part of software development life cycle (SDLC), other phases of SDLC
are intimately related to test cases (Pressman, 2005).

Several test case prioritisation schemes have been proposed to increase regression
testing effectiveness in terms of fault detection rate which can be categorised into
several groups named as software requirements-based (Arafeen and Do, 2013; Srivastva
et al., 2008), code coverage-based (Rothermel et al., 2001; Haidry and Miller,
2013), without considering SDLC information directly (Li et al., 2010; Malhotra
and Tiwari, 2013), etc. Collaborating requirements’ risk and severity Srivastva et al.
(2008) proposed prioritisation approach for tracing the potential test cases. Arafeen
and Do (2013) presented a requirement-based prioritisation approach, where similar
requirements are grouped together based on their textual similarities. Clusters were
created using these similarity values, where similar requirements were assigned to the
same cluster. Identifying critical component in software source code Mala and Praba
(2011) implemented test case prioritisation approach to improve code coverage where
computationally critical components were identified from software and suggested their
related test cases for early execution.

Using additional function coverage (AFC) Elbaum et al. (2002) presented a code
coverage-based approach for early fault detection where the functions are the major
part to assign weights on a test case. Genetic algorithm-based prioritisation tool has
been implemented by Islam et al. (2012a) to identify appropriate test case ordering with
respect to three different dimensions which are structure, function and cost. Malhotra
and Tiwari (2013) proposed a prioritisation framework that emphasised the rate of code
coverage by incorporating knowledge about the significance of code blocks.

However, mentioned approaches have been proposed by considering either
requirement or source code for prioritisation, which may lead an incomplete view. Since,
testing is one of the last phase of SDLC, any previous phases’ errors or faults may
propagate to this phase. On the other hand, every phase has its’ unique view points
for representing a software. That is why, all of these schemes would become more
appropriate by incorporating every previous SDLC phases together, because every phase
has considerably unique impact on test cases (Pressman, 2005).

In order to address the discussed scenario, this paper presents an effective test
case prioritisation framework named as requirements, design diagrams, and source
code collaboration (RDCC) where all the SDLC phases are considered. For test case
mapping, every requirement ID is uniquely identified as RDCC ID. Collaboration from
requirements to design diagrams, requirements to source code and requirements to
test cases are used to detect priority values. The proposed framework is experimented
on different software projects and results are compared to several prominent software
test case prioritisation schemes like requirements or source code-based prioritisation
technique. On average, proposed collaborative approach performs 22.77% and 29.01%
better than other implemented test case prioritisation schemes considering individual
phase of SDLC. The initial tasks of this research has been published in Siddik and Sakib
(2014). The major contributions of the research are listed below.

1 Requirements, corresponding to each test case, are analysed as textual similarity
by calculating term frequency and inverse document frequency. Design diagrams,
corresponding to each requirements, are extracted as readable XML format to test
the connectivity among software modules. Source code (developed based on
design diagram) are parsed as software code metrics (CMs) to calculate code

50 M.S. Siddik et al.

priority for either classes or functions related to each requirements. Those three
priorities are used to assign final priority values to test cases for early fault
detection and minimisation of test case execution.

2 Two versions of priority constants are experimented in this research, where the
first one is assigning equal priority to every phases of SDLC and another is
different priorities based on error propagation among different phases of SDLC.
Priority constants of different phases are also normalised for computational
simplicity. The cumulative priority values of different phases of SDLC are
assigned to related test cases. Finally test cases are sorted in descending order
based on their priority values which are assigned by collaborative SDLC
information.

3 It has been demonstrated experimentally that the collaborative information from
different phases of SDLC are more effective for test case prioritisation than
considering any individual phases [e.g., requirements (Srivastva et al., 2008) and
source code (Elbaum et al., 2002)]. In addition, assigning different priorities based
on error propagation performs better than assigning similar priorities. By
integrating those phases, proposed RDCC scheme overcomes the limitations of
prioritisation techniques, which analyse individual SDLC phase.

The remainder of this article is organised as follows: Section 2 provides the background
studies of this research, whereas a detailed literature survey of test case prioritisation
are discussed in Section 3. The details of newly proposed prioritisation framework is
described at Section 4. Experiments and result comparisons of proposed framework
are described in Section 5. Finally conclusions and future work of this research are
presented in Section 6.

2 Background

Software testing (Avila-George et al., 2013) is an inseparable part of SDLC to validate
the final product against users’ expectations. Although testing phase is executed at the
end of SDLC, about 30% to 40% time and cost are allocated for this phase (Rothermel
et al., 2001). By prioritising those test cases, total software development budget can be
reduced.

2.1 Test case prioritisation

Test case prioritisation determines the proper re-orderings of test cases so that faults
can be detected early (Rothermel et al., 2001; Rahman et al., 2018). It does not always
confirm to detect faults early but maximises the probability to detect early faults every
time (Islam et al., 2012b). The objectives of test case prioritisation techniques are to
identify the optimal order of the test cases that are effective (in terms of capability of
early detecting faults) and efficient (in terms of test case execution numbers). More
specifically, the test case prioritisation is a process to identify maximum faults in
minimum test case execution.

Prioritising test cases by collaborating artefacts 51

Test case prioritisation is formulated as a computational problem in the very
first time (Rothermel et al., 2001). According to their formulated problem, test case
prioritisation is defined as:

Given:
• (T): a test suite
• (PT): the set of permutations of T
• (f: PT → R): a function from PT to real numbers
Problem:
to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ ̸= T ′)[f(T ′) > f(T ′′)].

Here, PT represents the set of all possible prioritisation schemes of T and f is a function
that, applied to any such ordering, yields an award value for that ordering.

2.2 Traceability matrix

Test cases have a sheer connection between requirements. A traceability matrix is a
document usually in tabular form, containing that relationship. Test case IDs (e.g., TC1,
..., TCm) including its corresponding requirement IDs (e.g., Req1, ..., Req n) are denoted
by the row of that table. Traceability matrix would be generated for implementing
any test case prioritisation schemes, because this is the only matrix where test cases
and requirements are mapped. A sample traceability matrix is presented in Table 1,
containing m test cases and n requirements.

Table 1 Traceability matrix sample

Test case Req1 Req2 Req3 Req4 ... Req n

TC 1 * ...
TC 2 * ...
TC 3 * * ...
...
TC m mn

2.3 Connection between test cases and SDLC phases

Test cases are basically written to validate final product against requirements. On
the other hand, modules in design diagrams are drawn based on their corresponding
requirement IDs. Finally, source codes are developed for every design module. Sample
interconnections among different phases of SDLC are presented in Table 2, where one
requirement ID might be connected to multiple design modules or source classes. In this
case, several test cases are needed to fulfill that requirement, for example, in Table 2
requirement 1 is connected with design modules 1 and 4, source code class sample1,
and test cases 1 and 4.

52 M.S. Siddik et al.

Table 2 Sample interconnection among different phases of SDLC

Requirement specification Design diagram Source code Test case

Req 1 Module 1, module 4 sample1.class TC 1, TC 4
Req 2 Module 2 sample2.class TC 2
Req 3 Module 3 sample3.class TC 3, TC 4, TC 5
...

3 Literature review of test case prioritisation

Because of its importance and effectiveness in large scale software testing, in recent
years, researchers have investigated different approaches of test case prioritisation.
Existing researches on test case prioritisation can be divided into different groups such
as analysing software requirements to detect faulty modules earlier (Arafeen and Do,
2013; Srivastva et al., 2008), processing source code to get maximum code coverage
(Rothermel et al., 2001; Haidry and Miller, 2013; Elbaum et al., 2002), etc. This
section describes those grouped prioritisation schemes including their methodologies,
experiments and limitations.

3.1 Prioritisation by analysing software requirements

Test cases are usually written based on software requirements, the key part of
SDLC. Software requirements reflect the requirement engineers’ viewpoints, customers’
feedback and priorities, etc. (Sommerville, 2004), which are needed for prioritising test
cases. That is why, researchers pointed the use of requirements during software test
case prioritisation (Srikanth and Williams, 2005; Arafeen and Do, 2013; Srivastva et al.,
2008).

Srivastiva et al. collaborated risk and severity factor (RSF) for tracing the potential
test cases. Different values were manually assigned to every software requirements from
customers and developers which are added to the risk factor of those requirements.
Probability factors were assigned to each requirement based on their importance
(Srivastva et al., 2008). This process finally delivered a numeric value of weighted risk
and requirements priority by multiplying associated risk and probability values. This
process was validated by an in-house devolved software. However, there was also be
a lack of integrating different software information such as requirements traceability,
source code priority, etc. which might this result questionable. Because, according to
Islam et al., without considering source code and requirements, prioritisation approaches
can not cover all possible segments (Islam et al., 2012b).

Arafeen et al. presented a requirement-based prioritisation approach, where similar
requirements are grouped together based on their textual similarities. Clusters were
created using these similarity values, where similar requirements were assigned to the
same cluster. To perform prioritisation, several types of information were being used
such as requirements-traceability matrix, requirements modification history (Arafeen
and Do, 2013), etc. The empirical results showed that clustering approach significantly
outperformed the techniques without clustering. However, reported results would be

Prioritising test cases by collaborating artefacts 53

more accurate by considering the corresponding design diagrams for prioritising
requirements, because design diagrams have idiosyncratic uniqueness to present a
software.

3.2 Prioritisation by analysing software source code

Source code is the most important part of SDLC, because of its programed logic,
scripts, etc. (Harman, 2010), which are used to run software test cases. It was researched
that, information from source code analysis can lead effective prioritisation approaches
(Haidry and Miller, 2013; Elbaum et al., 2002).

In every software, some components become critical and fault prone, because of
their high functionality and dependability with other components. On the other hand,
poor quality of any software components adversely affects the quality of the overall
system (Balsamo et al., 1998). Mala and Praba (2011) proposed test case prioritisation
approach using critical component identification in software source code. Their approach
identified the computationally critical components from software and suggested their
related test cases for early execution.

The AFC is a code-based prioritisation approach for early fault detection where the
functions are the major part to assign weights on a test case (Elbaum et al., 2002). This
prioritisation technique depends on information relating the test suite to various elements
of source code of the original system like statements, classes, functions, etc. (Haidry and
Miller, 2013; Elbaum et al., 2002). For example, a particular code-based technique can
utilise information about the number of functions executed, or the number of blocks of
code executed, by a test. To achieve early fault detection, Elbaum et al. (2002) presented
several code-based prioritisation techniques including AFC. This approach was proposed
by analysing source code only, where information from source code are used to prioritise
test cases.

3.3 Other test case prioritisation schemes

Several prioritisation schemes have also been proposed excluding the SDLC
information. Among them heuristic approaches (Li et al., 2010; Islam et al., 2012a),
trace events technique (Rajarathinam and Natarajan, 2013), graph theoretic approaches
(Ramanathan et al., 2008), etc. are most prominent. Those approaches are basically
developed using the combination of test cases to find the best one. Researchers
introduced some heuristic algorithms to predict the approximate order of test cases for
prioritising such as hill climbing (Li et al., 2010), genetic algorithm (Malhotra and
Tiwari, 2013), etc.

Islam et al. (2012a) presented a software tool named multi-objective test case
prioritisation technique (MOTCP) to achieve both code and requirements coverage.
Genetic algorithm was used to identify appropriate test case ordering with respect to
three different dimensions which are structure, function and cost. In this scenario, the
structural dimension was related to source code and test cases under analysis. On the
other hand, the functional dimension was about how test cases exercise requirements,
whereas the cost dimension was concerned to the test execution time. Malhotra and
Tiwari (2013) proposed a framework for test case prioritisation that emphasised the rate
of code coverage by incorporating knowledge about the significance of blocks of code.

54 M.S. Siddik et al.

This approach used a newly proposed metric as fitness evaluation function in a genetic
algorithm in order to evaluate the effectiveness of a test case sequence. The result
would be more efficient by considering software requirement, because requirement has
inauguration viewpoint of a software.

Sangaiah et al. (2018) proposed a software risk assessment framework to rank
notable software project risks for decision making in SDLC phases using fuzzy
multi-criteria approaches. This strategy combined multiple risk evaluation techniques
for enhancing software project performance in five major aspects named requirements,
estimation, planning and control, team organisation, and project management. Triangular
fuzzy numbers are used to quantify fuzzy linguistic variables on a scale of 0 or 1. In
this approach, potential software risks will be identified and prioritised at early stage of
SDLC phases, which ensures better handle on the improvement of software performance.
The investigated result shows this approach can effectively support the decision making
during validation of software risk factors compared to existing other methods.

Pan et al. (2018) proposed a test case prioritisation approach combining unit test
methods and test definition use associations (DU-chain) coverage to detect faults early
at regression testing. This method quantified test cases using DU-chain coverage and
fault detection capability to prioritise test cases. The experimental result showed that, the
prioritisation technique can improve error detection rate at early of regression testing.
However, for experimentation this technique manually implanted error, which leads to
biasness in result.

Dahiya et al. (2016) presented an approach for regression test selection using class,
sequence and activity diagrams. This work compared old and new versions of UML
diagrams to categorise test cases into several category to find out the change operations,
which provided significant increase in accuracy. Ramanathan et al. (2008) introduced
graph-theoretic framework for test case prioritisation named PHALANX. This approach
has been presented by addressing the limitations of implementation complexity in testing
process. It considered the dissimilarity of a test case with others in the test suite, by
executing dissimilar test cases upfront, different aspects of software are tested earlier
that will cover whole software activities (Ramanathan et al., 2008).

3.4 Summary

The review of the existing literature has shown that various prioritisation schemes
have been proposed for software testing like source code analysis, heuristics approach,
etc. Very few researchers addressed the software requirement information for test case
prioritisation, which are incomplete because, none of the work directly propose any
method that incorporates all phases of SDLC named as software requirements, design
and source code, where every phase has unique view points.

4 Proposed collaborative framework for test case prioritisation

RDCC is the proposed prioritisation framework, integrating every phase of SDLC to
detect faulty modules earlier. In SDLC, requirement engineers assemble SRS documents
using direct interaction with customers or end-users. Software designers prepare design
diagrams for the development phase on the basis of these SRS documents. Finally,
software developers develop source code based on design diagrams. This section

Prioritising test cases by collaborating artefacts 55

describes the detail RDCC framework including it’s architecture, activities, processing
algorithms and prioritisation approach.

Figure 1 Internal interaction of proposed framework

Design

Diagram

Source

Code SRS

Syntax Parser XML Reader Call Graph

Generator

Requirements,

Design, Code

Collaboration

Requirements priority

number matrix

Design module

priority matrix
Class/method

priority matrix

Test Run

Center
RDCC Test Case

Mapping Center

Final module/service

priority matrix

The internal interactions among different layer activities including their dependencies
and connectivities are presented in Figure 1. Various modules such as syntax parser,
XML reader and call graph generator, etc. are used to process inputs to the starting layer
of this framework. These processed information are individually prioritised and finally
collaborated with each others. RDCC test case mapping centre (presented in Figure 1)
uses these collaborative values to generate a prioritised list of test cases, which plays in
the principle layer of this framework.

4.1 Layer 1: input layer

The top layer of RDCC framework is named as RDCC input layer, because it takes
input from end users for whole RDCC framework. In this layer, requirements, design
diagrams, source code and test cases are collected as input from customers, designers,
developers and test engineers respectively, and prepared those as output (e.g., text or
XML form). Those outputs are usually used as the processing elements of RDCC service
layer.

4.2 Layer 2: service layer

RDCC service layer is the principle processing layer of this framework, which takes
different SDLC phase information as input from RDCC input layer and calculates their
priority values as output. The whole process is divided into four major activities which
are listed below.

56 M.S. Siddik et al.

4.2.1 Requirement prioritisation

SRS documents usually contain the listed software requirements, which are provided
by the customers. A list of well documented requirements is mandatory for this phase
to parse the representative information (Wiegers, 1999). Because according to Wiegers
(1999) without writing quality requirements, a software project may fail to achieve
its’ success. How to process and prioritise requirements for test case prioritisation, are
described below.

Requirement processing

Requirements are analysed for prioritisation, because test cases are written based on
software requirements. The requirement priorities are calculated using textual similarities
(Aggarwal and Zhai, 2012).

tf(t, r) =
f(t, r)

max {f(w, r) : w ∈ r}
(1)

idf(t, r) = log
N

|{r ∈ R : t ∈ r}|
(2)

tfidf(t, r, R) = tf(t, r)× idf(t, r) (3)

Reqi =
t∑

j=1

TermIDij (4)

ReqPriorityi =
Reqi

max(Req0, Req1, ..., Req|R|)
∀i = 1, 2, 3, ..., |R| (5)

Term document matrix creation and prioritisation

Each requirement is considered as a pool of structured and non structured words.
Requirements are inputted as string type which are split into words. The stop words
that have no specific meaning or that are not related to RDCC are eliminated, and the
only significant words are used to create a term document matrix (Salton and Buckley,
1988) to identify related words. In this matrix the rows and columns correspond to the
requirements and the distinct terms respectively. The multiplication of term frequency
[equation (1)] and inverse document frequency [equation (2)] calculates the tfidf
value [equation (3)]. Those frequency values of all terms are used for requirements
prioritisation.

In this framework, every requirement has a requirement ID, which is uniquely used
as RDCC ID. The priority of each RDCC ID is calculated by the division of term
priority and the sum of all priorities, which is presented by equation (4), where i
and j represent the requirement ID and term ID number respectively. Final values are
normalised for the implementation simplicity which are presented in equation (5).

Prioritising test cases by collaborating artefacts 57

Algorithm 1 Algorithm for assigning requirement priorities

Require: Set of requirements R, priority list P1, priority function: Ri → P1i
Ensure: Assigned priority list for requirements P1
1: Begin
2: R← filterstopword(R)
3: P1← {}
4: for each requirements ri ∈ R do
5: sum← 0
6: for each term t ∈ ri do
7: tf = calculatetf(t, r) using equation (1)
8: idf = calculateidf(t, r) using equation (2)
9: tfidf = tf × idf
10: sum + = tfidf
11: end for
12: P1i ← sum
13: end for
14: for each requirement priority rpi ∈ P1 do
15: rpi ← rpi

max(P1)

16: end for
17: End

Algorithm for assigning requirement priorities

Algorithm 1 presents the requirements processing activities which takes the set of
requirements R, priority function: Ri → P1i as input and returns an assigned priority
list as output. It stores the requirement priority values to priority list P1. In the very
beginning of this process, every requirement is split into words including stop words.
After removing the stop words, only important words are listed for execution, where
proper nouns and verb base forms denote the class names and function or method
names respectively. These words are usually named as terms for creating term document
matrix. Initially, for every requirements, the priority list P1 is initialised to 0 (presented
in line 3).

The term list which is generated from the stop word filtering process, are used to
calculate term frequency [equation (1)] presented in line 7. Inverse document frequency
is also calculated using equation (2) for every requirement in the document presented
in line 8. Finally the summation of tfidf values are calculated using equation (3) and
stored in priority list P1. The term document matrix is generated using the normalised
tfidf values, which is presented in lines 7–11.

4.2.2 Design diagram prioritisation

Software design prioritisation is also an important phase, because design diagrams
contain the designers view points, which is unique to any other phases of SDLC. To
process the design diagrams, information from different diagrams (e.g., state transition
model) are extracted. Every design diagram may have different representational views,
but the underlying connection among design modules remain the same.

The design priority assignment is illustrated in Algorithm 2, which takes XML
design diagram D as input, and stores their priorities to design element priority list
P2. It generates a weighted priority list for design elements corresponding to each

58 M.S. Siddik et al.

requirement. XML Parser is used to retrieve information from design XML. Before
executing Algorithm 2, priority list P2 is initialised to 0 for all design elements. This
algorithm calculates the relationship between every pair of elements (e.g., state in
state-transition). Relationships are calculated among all states in design diagrams which
is presented at lines 4 and 5. If there is a relation between any two elements, the
priority value is updated for both elements which is denoted at lines 7 and 8.

Algorithm 2 Algorithm for assigning design diagram priorities

Require: Design diagram XLM D, priority list P2, priority function: Di → P2i
Ensure: Assigned priority list for design diagram P2
1: Begin
2: E ← XMLParser(D)
3: P2← 0
4: for each element e ∈ E do
5: for each element d ∈ E \ {e} do
6: if hasRelation(e, d) then
7: P2e ← P2e + 1
8: P2d ← P2d + 1
9: end if
10: end for
11: end for
12: for each design priority dpi ∈ P2 do
13: dpi ← dpi

max(P2)

14: end for
15: End

Algorithm 3 Algorithm for assigning source code priorities

Require: Source Code C, priority list P3, priority function: Ci → P3i
Ensure: Assigned priority list for requirements P3
1: Begin
2: CMij ← 0, P3← 0
3: if Source Code follows OOP then
4: for each class c ∈ C do
5: CMij ← calculateCodeMetrics(c)
6: end for
7: else
8: for each function f ∈ C do
9: CMij ← calculateCodeMetrics(f)
10: end for
11: end if
12: for j = 0 to len(CMj) do
13: CMmax ← max(CMj)
14: for i = 0 to len(CMij) do
15: CMij ← CMij

CMmax

16: end for
17: end for
18: for each source code priority cpi ∈ P3 do
19: cpi ← average(CMij)
20: end for
21: End

Prioritising test cases by collaborating artefacts 59

4.2.3 Software source code prioritisation technique

Source code is prioritised based on CMs, which is a set of quantitative measures
that provides overall description about a software (Kaner and Bond, 2004).
RDCC framework analyses both object oriented programming (OOP) and functional
programming (FP). In both, OOP and FP, classes and functions are the idiosyncratic
code elements accordingly. Code metrics [e.g., lines of code, McCabe’s cyclomatic
complexity, nested block depth, etc. (Fenton and Bieman, 2014)] are used to calculate
source code priority.

Algorithm 3 presents the whole source code processing and prioritising approach
to detect vulnerable code sections. It takes source code C as input, and stores their
priorities to source code priority list P3. A sorted source code priority list is generated
as output to investigate error prone modules earlier. The CM values and priority list are
initialised to 0 (Algorithm 3 lines 2–3). OOP and FP metrics are individually calculated
for classes and functions accordingly (lines 4–12). The calculated CMs are normalised
by dividing their maximum value of their priority list. This process is executed for every
CM in the priority list which is presented at lines 13–15. Finally the average value of
all normalised CMs are assigned to the source code priority list P3 which is denoted
in lines 16–18.

4.2.4 RDCC module integration and prioritisation

Previously prioritised RDCC modules named as requirements, design diagrams and
source code are integrated and prioritised in this phase, where every requirement
ID is considered as RDCC ID. Equation (6) explains the collaborative viewpoints
by calculating the values of every RDCC ID priorities, and the symbols used in
equation (6) are listed in Table 3. The calculated values from requirement specifications,
design diagrams and source code are multiplied by their priority constants α, β, and
γ respectively. The priority constants are positive numbers, and the sum of all three
constants must be equal to 1.

Wi = α× P1 + β × P2 + γ × P3 ∀i=1,2,3, ..., n (6)

Subject to : 0 ≤ α ≤ 1

0 ≤ β ≤ 1

0 ≤ γ ≤ 1

α+ β + γ = 1

If any requirement is connected to multiple design module or source code elements,
cumulative priorities will be considered for that requirement. For example, ID
requirement 4 is connected to design modules 4 and 5, then P2 will be the sum of
design priority P2[4] and P2[5]. This paper proposed two types of constant value
assignment techniques for RDCC module integration, which are described in the
following subsections.

Priority type 1: equal priority based on equal importance

Requirement, design diagram and source code are uniquely related to software test cases
by generation, inter-connection and execution respectively. Those phases of SDLC also

60 M.S. Siddik et al.

have distinct point of views to represent the whole software. According to Pressman
(2005), all phases of SDLC are equally important to represent a software development.
Hence, equal values are assigned to every priority constant of requirement (α), design
diagram (β) and source code (γ). According to equation (6), the sum of all priority
constants α, β and γ is equal to 1. Hence, the individual priority of these constants will
be 1/3, because 1/3 + 1/3 + 1/3 = 1.

Table 3 Symbols used in equation (6)

Symbol Description

Wi Final weight of RDCC IDi

n Number of RDCC IDs
P1 Set of requirement priorities (0...1)
α Requirement prioritisation constant
P2 Set of design priorities (0...1)
β Design prioritisation constant
P3 Set of source code priorities (0...1)
γ Source code prioritisation constant

Priority type 2: weighted priority based on error propagation

In SDLC, every phase depends on it’s previous phase output (Sommerville, 2004). If any
phase triggers an error, that will be propagated to next phases and continued until the
final release. For example, errors of requirements engineering phase will be propagated
to the design and development phase. An example of error propagation procedure is
presented in Table 4, containing three errors (e1, e2 and e3) and three considered RDCC
phases (requirement, design and source code). Based on this hypothesis, the impacts of
requirements, design and source code will be 3, 2 and 1. So, according to equation (6),
the normalised value of α, β and γ is 3/6, 2/6 and 1/6 respectively.

Table 4 Different priorities based on error propagation

e1 (initiated at requirements) e2 (initiated at design) e3 (initiated at code)

Requirements X × ×
Design X X ×
Source code X X X
Impact of errors 3 2 1
Normalised impact 3

6
2
6

1
6

The sum of all multiplied weighted values calculates the final weight. This calculation
are executed until all the RDCC IDs are processed.

4.3 Layer 3: test case processing layer

This layer takes final priority value from RDCC service layers and generates an ordered
list of test cases using those values for the prioritisation. Test cases are written based

Prioritising test cases by collaborating artefacts 61

on the customers’ requirements to verify the expected final products. That is why, every
test case must be related to at least one requirement, which are mapped in traceability
matrix. Using the values from that matrix and prioritised SDLC phases, final priorities
are assigned to test cases.

A requirements traceability matrix is generated in test case generation phase
including requirements and their corresponding test cases to point related words. Since,
requirement IDs are used as RDCC IDs, that means the ‘RDCC – test cases mapping
resolution’ can be found in that matrix and those requirement priorities are used for their
assigned test cases. If one test case is assigned to multiple requirements, the cumulative
priorities are set to that test case. On the other hand, if one requirement is assigned to
multiple test cases, that requirement priority is set to all assigned test cases. The priority
value of a test case is proportional to it’s ability to fault detection. That means, test
cases containing higher priority values have higher fault detecting possibilities.

5 Experimental setup and result analysis

This section presents the implementation approaches of the proposed test case
prioritisation framework along with its evaluation on early fault detection. The RDCC
framework is tested with six applications which are developed by undergraduate
Software Project Lab at IIT, University of Dhaka [uploaded at Github (Project Lab for
Test Case Prioritization, 2015), and listed in Table 5]. The performance of RDCC is
compared to several most prominent test case prioritisation approaches named as natural
orders, RSF (Srivastva et al., 2008) and AFC (Elbaum et al., 2002). Details regarding
the experimental setup of those schemes are also provided in this section. Finally, the
performance of RDCC is evaluated on the basis of early fault detection and percentage
of test case execution to detect faults. The weighted variations of detected faults are not
considered in this experiment, where every faults are assumed as equal critical.

Table 5 Dataset information for test case prioritisation

DS ID DS name Number of Design LOC Number of
requirements diagram test cases

DS1 News-A: an online news portal 14 Yes 356 74
DS2 Scientific calculator 8 Yes 636 37
DS3 Sparrow: file reading software 20 Yes 752 25
DS4 Amghotok: a platform of marriage 13 Yes 953 20
DS5 Painter: a canvas for painting freely 12 Yes 1021 16
DS6 POAS: program office automation software 18 Yes 4,037 62

Source: Project Lab for Test Case Prioritization (2015)

5.1 Implemented test case prioritisation approaches

Several test case prioritisation schemes [e.g., RSF (Srivastva et al., 2008), AFC (Elbaum
et al., 2002), etc.] are considered for the experimental analysis. Among those, three are
existing prominent approaches and rest are introduced in this paper (Table 6). In this

62 M.S. Siddik et al.

experiment, AFC (Elbaum et al., 2002) and RSF (Srivastva et al., 2008) are used as the
representative of existing source code and requirements-based prioritisation approaches.

5.1.1 Existing prioritisation schemes

In RSF the risk and severity values of every requirement are collected empirically from
requirement engineers and assigned the average value of that requirement for calculating
requirement priority. In this approach, two different prioritisation factors are assigned for
each requirement, which are collected from customers, developers or managers (value
range 0 to 10) (Srivastva et al., 2008). The first one is the requirement priority which
are collected from customers, developers and managers. Another one is risk factors for
every requirement which are collected from developers.

In AFC prioritisation the test with the maximum number of functions covered is
selected for early fault detection. If more than one test has the maximum number
of functions coverage, a test is selected randomly from that test suite. Since this
AFC prioritisation technique is implemented in Java programming language, Java rand
function is used for random selection. The selected test cases and covered functions are
not considered for further selection in AFC approach.

5.1.2 Proposed prioritisation scheme

In the RDCC scheme, requirements are split into words using java split function.
Stopwords are filtered using WordNet database (Miller, 1995) in every requirements.
Verbs are replaced with their base form using WordNet verb list. Term document matrix
is generated based on those remaining words or terms using term frequency – inverse
document frequency. The final requirement priority values are normalised by dividing
with the maximum priority value which are presented in equation (5).

Design diagrams are processed to retrieve design modules or state corresponding to
each requirements. Diagrams need to be converted as readable XML format, because
RDCC uses the underlying inter-connectivity among design modules. Hence, any design
diagram can be used to calculate design priority [e.g., the experimental datasets (DSs)
are designed using state transition diagram]. In the beginning of this process, design
priority list is initialised to 0. If there is a connection between two states, these state
positions in the priority list are incremented. This process is being continued until all
the connections are processed. The design priority values are normalised as same as
requirement priority normalisation presented in Algorithm 2.

Source code are processed using four CMs named as, lines of code, McCabe’s
cyclomatic complexity, weighted methods per class (Fenton and Bieman, 2014), and
nested block depth (Fenton and Bieman, 2014). The proposed Eclipse metric plug-in is
used to export CMs values into a XML file. Those metrics values are calculated for
every classes in OOP to initialise code priority. The individual class of function metric
values are normalised by dividing the maximum metric value. The average of these
normalised metrics is used as source code priority. Any other CMs might be used, but
the average of all normalised metrics lead the code priority.

Two types of collaboration approaches equal priority (RDCC-v1) and weighted
priority (RDCC-v2) are experimented in this research. One experimental prioritisation
schemes are also noticed, which is the byproduct of RDCC approach named as

Prioritising test cases by collaborating artefacts 63

using design diagrams only (RD1CC). All of the six prioritisation schemes with their
acronyms and descriptions are listed in Table 6.

Table 6 Implemented test case prioritisation approaches

Priority Acronym Description
scheme ID

P1 Natural Natural order for test case execution, which is the generation
order of test cases.

P2 Random Random order for test case execution, average of 50 iteration
results are used for test case priority values.

P3 RSF Risk and severity factor (RSF): a requirements-based prioritisation
(Srivastva et al., 2008).

P4 R1DCC A portion of proposed RDCC, where test cases are prioritised based
on only requirements prioritisation in a new way.

P5 RD1CC A portion of proposed RDCC, where test cases are prioritised based
on only design diagrams prioritisation.

P6 AFC Additional function coverage (AFC): a code-based prioritisation
(Elbaum et al., 2002).

P7 RDC1C A portion of proposed RDCC, where test cases are prioritised based
on only source code prioritisation only.

P8 RDCC-v1 Proposed RDCC approach with equal priority constants of
requirements, design and source code, in the basis of equally importance.

P9 RDCC-v2 Proposed RDCC approach with different priority constants of
requirements, design and source code based on error propagation flow.

Table 7 Experimental setup and determined constant values for implementing different
prioritisation techniques

Prioritisation parameters Values

Upper limit of single prioritisation parameter 1
Prioritisation range 0 to 1
Requirement priority constant (α) RDCC-v1: 1

3
, RDCC-v2: 3

6

Design priority constant (β) RDCC-v1: 1
3
, RDCC-v2: 2

6

Source code priority constant (γ) RDCC-v1: 1
3
, RDCC-v2: 1

6

Implemented language Java
Numbers of requirements in dataset Varied from 8 to 20
Numbers of line of code in dataset Varied from 636 to 4,037
Numbers of test cases in dataset Varied from 18 to 74

5.2 Assumptions and priority constants

The priority constants of requirements, design diagrams and source code are α, β and
γ respectively, which determine their impacts on test cases. The sum of those three

64 M.S. Siddik et al.

constants must be equal to 1 for normalisation (details presented in Subsection 4.2.4).
For implementing RDCC framework, those constants are assigned based on two
different types of priority.

Priority type 1 Equal priority: The value of α, β and γ are equal, based on similar
importance on test cases to calculate average priority. That means
α = β = γ = 1/3.

Priority type 2 Weighted priority: The value of α, β and γ are different based on
error propagation. Here, α = 3/6, β = 2/6 and γ = 1/6.

All the assumptions and priority constant values for implementation are listed in Table 7.

5.3 Performance analysis and comparison

To measure the efficiency of test case prioritisation technique, fault detection rates
and test case execution percentage both are considered as metrics. Those parameters
represent the performance of prioritisation techniques in two different point of views.

Definition and experimental results of those two performance analysis views are
given below.

1 View 1: Percentage of detected faults with varying number of test execution.

3 View 2: Percentage of test case execution to detect different numbers of faults.

According to view 1, the higher the fault detection, the better the prioritisation approach
is. On the other hand (for view 2), the prioritisation approach executes the lower
number of test cases to detect faults is better than other approaches. For both cases, the
experimental setup and assumed constants are remaining the same which are listed in
Table 7.

5.3.1 View 1: percentage of detected faults with varying number of test case
execution

One of the major goals of test case prioritisation is to detect faults earlier, which is
the effectiveness of a prioritisation scheme. The percentage of fault detection shows
what number of faults are detected after a certain number of test case execution. This
experimental process is divided into three phases, based on percentages of test case
execution named as first quarter (25%), half (50%) and third quarter (75%). Full test
case (100%) execution results are not considered, because after executing 100% test
cases, all the faults should be detected by all prioritisation schemes. Whereas the goal
of test case prioritisation is to find the important faults earlier.

The fault detection results are listed in Table 8, indicating the percentage of fault
detection with varying number test case execution for individual DS. According to that
table, collaborative approaches (RDCC-v1 and RDCC-v2) performs better than any
other approaches. In first quarter (25%), RDCC-v1, RDCC-v2 and AFC detect 36.41%,
32.66%, and 28.97% faults respectively, which are better than average. After 50%
for test case execution, RDCC-v2 detects 71.67% faults on average, which is the best

Prioritising test cases by collaborating artefacts 65

among all others, and RDCC-v1, RDCC-v2, RD1CC perform better than average. In
this quarter the highest and lowest fault detection rates are 71.47% and 36.47%, which
are performed by RDCC-v2 and natural order respectively. In the third quarter, other
schemes except RDCC-v1 and RDCC-v2 are only the below average of fault detection
accuracy. In this quarter, the highest and lowest detection percentages are 88.12% (by
RDCC-V2) and 61.33% (by natural order) respectively.

Figure 2 Percentage of detected faults with varying number test case execution, (a) after 25%
of test case execution (b) after 50% of test case execution (c) after 75% of test case
execution

 0

 20

 40

 60

 80

 100

N
at

ur
al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(a)

 0

 20

 40

 60

 80

 100

N
at

ur
al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(b)

 0

 20

 40

 60

 80

 100

N
at

ur
al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(c)

Table 8 Percentage of fault detection with varying number test case execution

% of TCs DS P1 P2 P3 P4 P5 P7 P6 P8 P9

25% DS1 25 16.67 25 33.33 25 25 25 33.33 33.33
DS2 25 8.33 25 41.67 0 16.67 33.33 50 50
DS3 25 50 25 37.5 25 25 25 37.5 25
DS4 7.14 17.86 7.14 14.29 7.14 7.14 7.14 14.29 14.29
DS5 16.67 50 33.33 33.33 33.33 33.33 33.33 33.33 33.33
DS6 10 20 30 40 50 40 50 50 40
AVG 18.13 27.14 24.25 33.35 23.41 24.52 28.97 36.41 32.66

66 M.S. Siddik et al.

Table 8 Percentage of fault detection with varying number test case execution (continued)

% of TCs DS P1 P2 P3 P4 P5 P7 P6 P8 P9

50% DS1 41.67 50 41.67 58.33 58.33 58.33 58.33 58.33 58.33
DS2 66.67 33.33 66.67 58.33 58.33 58.33 58.33 75 75
DS3 50 87.5 62.5 62.5 37.5 37.5 50 50 50
DS4 7.14 42.86 35.71 57.14 71.43 67.86 46.43 82.14 82.14
DS5 33.33 50 50 33.33 66.67 50 50 33.33 83.33
DS6 20 50 60 70 70 70 80 80 80
AVG 36.47 52.28 52.76 56.61 60.38 57 57.18 63.13 71.47

75% DS1 75 66.67 58.33 83.33 83.33 75 83.33 83.33 83.33
DS2 91.67 75 75 75 75 75 75 75 75
DS3 62.5 80 75 75 75 75 87.5 87.5 87.5
DS4 32.14 60.71 92.86 92.86 92.86 92.86 92.86 92.86 92.86
DS5 66.67 66.67 83.33 83.33 66.67 83.33 83.33 83.33 100
DS6 40 80 90 100 100 100 90 100 90
AVG 61.33 71.51 79.09 84.92 82.14 83.53 85.34 87 88.12

The percentage of detected faults are graphically visualised in Figure 2 using
box-whisker plot, where X-axis and Y-axis represents the prioritisation approaches and
percentages of detected faults (0% to 100%) respectively. In that figure, the average line,
minimum and maximum points are depicted for every prioritisation scheme. According
to Figures 2(b) and 2(c), approach that detected faults earlier is RDCC-v2, because its
average line and maximum outlier are higher than any other approaches. On the other
hand, RDCC-v1 performs better than others in the first quarter [Figure 2(a), after 25%
of test case execution], because it detects maximum faults in this quarter.

5.3.2 View 2: percentage of test case execution to detect different number of faults

Maximum fault detection in minimum test case execution is one of the major goals of
the test case prioritisation. The percentage of test case execution results can measure
the efficiency of prioritisation approaches in terms of early fault detection by executing
certain amount of test cases. The lower the number of test case execution is, the
higher the efficiency of a prioritisation technique will be. This measuring approach is
experimented into four different phases of fault detection percentages named as 25%,
50%, 75% and 100%. All faults are divided into those four different quarters to measure
the prioritisation schemes’ efficiency in step by step.

The test case execution results to detect different quarters of faults are presented in
Table 9. Detecting 25% faults, RDCC-v1 and natural order execute 17.52% and 31.82%,
which are the lowest and highest value respectively. In this phase AFC, RDCC-v1 and
RDCC-v2 execute 22.73%, 17.52% and 20.98% test cases which perform better than
average result (24.03%). In the rest of the quarter (e.g., 50%, 75% and 100% fault
detection) RDCC-v2 executes 34.74%, 50.65%, and 88.42% test cases respectively to
detect faults, which are better than any other schemes. Because, RDCC-v2 considers all
possible view points about a software.

Prioritising test cases by collaborating artefacts 67

Figure 3 Percentage of test case execution to detect different number of faults, (a) for 25%
fault detection (b) for 50% fault detection (c) for 75% fault detection (d) for 100%
fault detection

 0

 20

 40

 60

 80

 100
N

at
ur

al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(a)

 0

 20

 40

 60

 80

 100

N
at

ur
al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(b)

 0

 20

 40

 60

 80

 100

N
at

ur
al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(c)

 0

 20

 40

 60

 80

 100

N
at

ur
al

R
S

F

R
D

1C
C

A
F

C

R
D

C
C

-v
1

R
D

C
C

-v
2

(d)

Table 9 Percentage of test case execution to detect different number of faults

% of TCs DS P1 P2 P3 P4 P5 P7 P6 P8 P9

25% DS1 25 30 25 15 25 25 20 15 20
DS2 10.81 43.24 24.32 13.51 35.14 35.14 18.92 13.51 13.51
DS3 20 15 20 10 20 20 15 10 25
DS4 72.37 34.21 46.05 28.95 32.89 32.89 38.16 28.95 28.95
DS5 33.33 13.33 26.67 20 26.67 26.67 26.67 20 26.67
DS6 29.41 41.18 29.41 23.53 17.65 23.53 17.65 17.65 11.76
AVG 31.82 29.49 28.58 18.5 26.22 27.2 22.73 17.52 20.98

50% DS1 55 50 65 35 45 45 45 35 45
DS2 43.24 59.46 35.14 24.32 45.95 45.95 27.03 24.32 24.32
DS3 40 25 40 35 55 55 40 35 50
DS4 81.58 61.84 55.26 38.16 42.11 42.11 47.37 38.16 38.16
DS5 60 26.67 33.33 66.67 33.33 46.67 53.33 66.67 33.33
DS6 52.94 52.94 41.18 35.29 29.41 29.41 29.41 29.41 17.65
AVG 55.46 45.98 44.98 39.07 41.8 44.02 40.36 38.09 34.74

68 M.S. Siddik et al.

Table 9 Percentage of test case execution to detect different number of faults (continued)

% of TCs DS P1 P2 P3 P4 P5 P7 P6 P8 P9

75% DS1 75 80 85 60 70 70 70 60 70
DS2 56.76 72.97 67.57 51.35 72.97 72.97 54.05 51.35 51.35
DS3 90 45 70 60 75 75 75 65 65
DS4 90.79 85.53 64.47 55.26 51.32 51.32 56.58 47.37 47.37
DS5 86.67 86.67 66.67 80 86.67 60 73.33 80 46.67
DS6 76.47 70.59 70.59 47.06 58.82 58.82 47.06 47.06 23.53
AVG 79.28 73.46 70.72 58.95 69.13 64.69 62.67 58.46 50.65

100% DS1 95 96 100 100 95 100 100 100 100
DS2 97.3 89.19 97.3 91.89 81.08 97.3 91.89 97.3 97.3
DS3 100 90 85 95 90 90 90 85 85
DS4 100 92.5 100 100 100 100 100 100 100
DS5 100 88.5 100 86.67 100 100 80 86.67 60
DS6 88.24 98 94.12 76.47 76.47 88.24 76.47 70.59 88.24
AVG 96.76 92.36 96.07 91.67 90.43 95.92 89.73 89.93 88.42

Figure 3 depicts the execution results of test case using box-whisker plot, where
where X-axis and Y-axis represents the prioritisation approaches and test case execution
percentages (0% to 100%) respectively. According to that figure, the average results of
RDCC-v1 is the best for detecting 25% faults [Figure 3(a)]. According to Figures 3(b),
3(c) and 3(d) prioritisation scheme RDCC-v2 outperforms other implemented schemes in
terms of test case execution. Because the average line in whisker-box, and the maximum
percentage of execution both are lower than any other prioritisation schemes, listed in
Table 6.

5.4 Result analysis and discussion

Since, the minimisation of test case execution can reduce testing time and cost, detecting
a specific percentage of faults, prioritisation approaches should need minimum numbers
of test case execution. RDCC-v2 scheme executes minimum number of test cases to
detect similar percentage of faults and performs better than any other implemented
schemes (column 8 in Tables 8 and 9).

RDCC-v2 approach outperforms existing techniques in terms of average fault
detection (Subsection 5.3.2) and test case execution (Subsection 5.3.1). However, after
executing specific percentage of test cases, it performs similar results with AFC (e.g.,
Table 8 DS5 in 25% test execution, and Table 9 DS1 and DS4 in 100% faults detection).
It may happen in small experiments, because collaborative information from every
phases of SDLC may not generate extra supporting issues for test case prioritisation
(such as incorporating requirements and code, requirements and design, etc.). In those
cases, proposed prioritisation technique may perform similar results to requirements
and source code analysis only, but not worst. For example, after 25% of test case

Prioritising test cases by collaborating artefacts 69

execution, RDCC-v1 and RDCC-v2 approaches produce similar results for experiment
DS3. However, most of the real life applications usually contains more modules.

Since early fault detection is one of the major goals of test case prioritisation,
RDCC-v2 approach performs 61.89%, 24.93%, 21.82% and 7.39% faster on average
of all other prioritisation schemes for 25%, 50%, 75% and 100% fault detection
respectively. Those percentages present a descending order of performance, because
RDCC approach already detects faults in early phases. Since majority faults are detected
in early phases of execution, there should be no significance in the later phases of
fault detection (e.g., 7.39% improvement in last quarter). That means collaborative
information from different phases of SDLC can increase the efficiency of test case
prioritisation technique by detecting early faults, which reduces the time and cost in
testing phases.

In a nutshell, RDCC-v2 outperforms other prioritisation schemes for all experiments
considering average fault detection and percentage of test case execution, specially for
large datatset. This scheme performs 13.414% and 13.893% better results on average
than any other implemented test case prioritisation approaches in terms of fault detection
and test case execution respectively. However, software requirements, design diagrams
and source code are mandatory for this prioritisation framework. Excluding any of
these three phases, RDCC framework works unexpectedly. Finally, it can be concluded
that prioritisation approach using the collaborative information from different phases of
SDLC can reduce time and cost in testing phase by increasing the fault detection and
minimising the test case execution rates.

5.5 Threats to validity

This section describes the external and internal threats to the validity of this experiment.
The approaches which have been taken to reduce those threats are also be added here.

• Threats to internal validity: The accuracy of proposed prioritisation scheme
depends on the correctness of requirement analysis, design diagrams and source
code developments. Incorrect design module connections or invalid requirement
analysis may miss lead the prioritisation objectives. Hence, in this study, the
greatest concern for internal validity involves the effectiveness of selecting
software artefacts for prioritising test cases. To control this threat, the normalised
average values are used to calculate any artefacts’ priority.

• Threats to external validity: The experimental study has been performed using
real life software with requirement documents and design diagrams, which were
small and medium in size. While the results from this experiment cannot be
interpreted in the context of industrial applications, different types of applications
are used to reduce this threat that came from various sources such as Android
apps, Java desktop apps, open source, etc. The proposed prioritisation approach
may not always outperform in every real life DS.

70 M.S. Siddik et al.

6 Conclusions and future work

Test case prioritisation approaches reduce software development time and cost by
maximising the percentage of fault detection and minimising the percentage of test case
execution. To achieve an effective prioritisation technique, information from different
phases of SDLC which are requirements, design diagrams and source code are needed
to be collaborated. Because those phases are uniquely connected to test cases by test
case generation, test modules’ connection and test case execution, respectively including
individual view points. This hypothesis is justified and proved throughout the paper and
an effective prioritisation framework is proposed using the collaborative information
of all SDLC phases. The comparative study of the proposed framework supports the
hypothesis.

In the proposed prioritisation scheme, requirements are analysed based on textual
similarity by filtering the stop words. The remaining terms of every requirement are
prioritised using term frequency – inverse document frequency to detect requirements
priority. Those priority values are normalised in a specific range for computational
simplicity. Design diagrams (corresponding to each requirement) are extracted as
readable XML format to detect the dependencies and connectivities among design
elements. Each of the elements in diagrams are prioritised based on their number of
detected connectivities. Source code are prioritised using various CMs such as line of
code, cyclomatic complexity, weighted methods per class, etc. Classes and functions
related to each requirement are used as the idiosyncratic values of source code for
prioritisation.

Every requirement ID is uniquely identified as RDCC ID in this framework,
which are calculated by using the relationships between requirement IDs and design
modules, and requirement IDs and classes. Final RDCC priorities are calculated by the
multiplication of those calculated priorities and priority constants. The priority constants
may be equal or different (both of those are experimented in this research). If any
of those phases is missing, the priority constant of that phase is assigned to 0. The
calculated final priority values are used to assign priority of related test cases. If a test
case is related to more than one requirement IDs, the cumulative priorities are assigned
for that test cases. Finally, the test cases are sorted in descending order for early fault
detection.

It has experimentally been shown that proposed RDCC scheme has a lower
percentage of test case execution and higher percentage of fault detection rate. In
terms of early fault detection according to the experiment, collaborative information
from different phases of SDLC performs 22.77% on average faster than any other
implemented prioritisation schemes. RDCC framework also outperforms in terms of
number of test case execution and minimises 29.01% test cases for detecting specific
percentage of faults. Those results infer that proposed RDCC scheme can lead to an
effective prioritisation approach by maximising the fault detection rate and minimising
the percentage of test case execution.

The efficiency of test case prioritisation schemes are closely related to test case
generation process. Hence, irrelevant test cases can negatively affect on prioritisation
performance. Before prioritising test cases, test generation processes need to be verified.
Hence, appropriate and smell free test case generation could be a future research
direction to improve the performance of test case prioritisation schemes.

Prioritising test cases by collaborating artefacts 71

References

Aggarwal, C. and Zhai, C. (2012) ‘A survey of text clustering algorithms’, in Mining Text Data,
pp.77–128, Springer, USA.

Arafeen, M. and Do, H. (2013) ‘Test case prioritization using requirements-based clustering’, in
Sixth International Conference on Software Testing, Verification and Validation (ICST), IEEE,
pp.312–321.

Avila, G.H., Torres, J.J., Gonzalez, H.L. and Hernandez, V. (2013) ‘Metaheuristic approach for
constructing functional test-suites’, IET Software, Vol. 7, No. 2, pp.104–117.

Balsamo, S., Inverardi, P. and Mangano, C. (1998) ‘An approach to performance evaluation of
software architectures’, in Proceedings of the 1st international workshop on Software and
Performance, ACM, pp.178–190.

Dahiya, S., Bhatia, R.K. and Rattan, D. (2016) ‘Regression test selection using class, sequence and
activity diagrams’, IET Software, Vol. 10, No. 3, pp.72–80.

Elbaum, S., Malishevsky, A.G. and Rothermel, G. (2002) ‘Test case prioritization: a family of
empirical studies’, IEEE Trans. on Software Engineering, Vol. 28, No. 2, pp.159–182.

Fenton, N. and Bieman, J. (2014) Software Metrics: A Rigorous and Practical Approach, CRC Press,
USA.

Haidry, S. and Miller, T. (2013) ‘Using dependency structures for prioritization of functional test
suites’, IEEE Transactions on Software Engineering, Vol. 39, No. 2, pp.258–275.

Harman, M. (2010) ‘Why source code analysis and manipulation will always be important’, in
10th Working Conference on Source Code Analysis and Manipulation (SCAM), IEEE Computer
Society, pp.7–19.

Hasan, A., Rahman, A., Siddik, M.S. (2017) ‘Test case prioritization based on dissimilarity clustering
using historical data analysis’, in International Conference on Information, Communiation and
Computing Technology, Springer, pp.269–281.

Islam, M.M., Marchetto, A., Susi, A., Kessler, F.B. and Scanniello, G. (2012a) ‘MOTCP: a tool for
the prioritization of test cases based on a sorting genetic algorithm and latent semantic indexing’,
in 28th International Conference on Software Maintenance (ICSM), IEEE, pp.654–657.

Islam, M.M., Marchetto, A., Susi, A. and Scanniello, G. (2012b) ‘A multi-objective technique to
prioritize test cases based on latent semantic indexing’, in 16th European Conference on Software
Maintenance and Reengineering (CSMR), IEEE, pp.21–30.

Kaner, C. and Bond, W. (2004) ‘Software engineering metrics: what do they measure and how do
we know’, in 10th Int. Software Metrics Symposium, IEEE, pp.1–12.

Li, S., Bian, N., Chen, Z., You, D. and He, Y. (2010) ‘A simulation study on some search algorithms
for regression test case prioritization’, in 10th International Conference on Quality Software
(QSIC), IEEE, pp.72–81.

Mala, D.J. and Praba, M.R. (2011) ‘Critical components identification and verification for effective
software test prioritization’, in Third International Conference on Advanced Computing (ICoAC),
IEEE, pp.181–186.

Malhotra, R. and Tiwari, D. (2013) ‘Development of a framework for test case prioritization using
genetic algorithm’, ACM SIGSOFT Software Engineering Notes, Vol. 38, No. 3, pp.1–6.

Miller, G.A. (1995) ‘WordNet: a lexical database for English’, Communications of the ACM, Vol. 38,
No. 11, pp.39–41.

Pan, L., Wang, T., Qin, J. and Xiang, X. (2018) ‘A dynamic test prioritisation based on du-chain
coverage for regression testing’, International Journal of Embedded Systems, Vol. 10, No. 2,
pp.113–119.

Pressman, R. (2005) Software Engineering: A Practitioner’s Approach, 6th ed., McGraw-Hill, Inc.,
New York, NY, USA.

72 M.S. Siddik et al.

Project Lab for Test Case Prioritization (2015) [online] https://github.com/iitprojectlab (accessed 18
August 2018).

Rahman, M.A., Hasan, M.A. and Siddik, M.S. (2018) ‘Prioritizing dissimilar test cases in regression
testing using historical failure data’, Int. Journal of Computer Applications, Vol. 180, No. 14,
pp.1–8.

Rajarathinam, K. and Natarajan, S. (2013) ‘Test suite prioritisation using trace events technique’, IET
Software, Vol. 7, No. 2, pp.85–92.

Ramanathan, M.K., Koyuturk, M., Grama, A. and Jagannathan, S. (2008) ‘Phalanx: a graph-theoretic
framework for test case prioritization’, in ACM Symposium on Applied Computing, ACM,
pp.667–673.

Rothermel, G., Untch, R.H., Chu, C. and Harrold, M.J. (2001) ‘Prioritizing test cases for regression
testing’, IEEE Transactions on Software Engineering, Vol. 27, No. 10, pp.929–948.

Salton, G. and Buckley, C. (1988) ‘Term-weighting approaches in automatic text retrieval’,
Information Processing & Management, Vol. 24, No. 5, pp.513–523.

Sangaiah, A.K., Samuel, O.W., Li, X., Abdel-Basset, M. and Wang, H. (2018) ‘Towards an efficient
risk assessment in software projects–fuzzy reinforcement paradigm’, Computers & Electrical
Engineering, Vol. 71, pp.833–846.

Siddik, M.S. and Sakib, K. (2014) ‘RDCC: an effective test case prioritization framework using
software requirements, design and source code collaboration’, in 17th Int. Conf. on Computer
and Information Technology (ICCIT), IEEE, pp.75–80.

Sommerville, I. (2004) Software Engineering, 7th ed., Pearson Addison Wesley, New York, NY, USA.
Srikanth, H. and Williams, L. (2005) ‘On the economics of requirements-based test case prioritization’,

in ACM SIGSOFT Software Engineering Notes, Vol. 30, pp.1–3.
Srivastva, P.R., Kumar, K. and Raghurama, G. (2008) ‘Test case prioritization based on requirements

and risk factors’, ACM SIGSOFT Software Engineering Notes, Vol. 33, No. 4, p.7.
Wiegers, K. (1999) ‘Writing quality requirements’, Software Development, Vol. 7, No. 5, pp.44–48.

