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Abstract: One of the most intriguing questions in mathematical epidemiology 
are how can one efficiently control and prevent the propagation of a disease. 
The problem of disease modelling, simulation and control becomes even more 
fascinating if we look at various risk groups. Referring to HIV-AIDS disease, it 
is worldwide agreed that the HIV virus seemingly knows when it should attack 
the body such as to develop AIDS disease. The fundamental question is 
therefore related to the time and location of such process to happen. To answer 
to this question, we study a model of propagation of HIV-AIDS in a given 
population. The AIDS disease is hardly easier to understand than HIV 
propagation dynamic, but fortunately, we can simplify the system even further 
by studying the susceptible and infected population dynamics in their behaviour 
in isolation and/or interaction. Finally, we develop a simulation model based on 
observed behaviours of susceptible and infected populations. This allows us to 
test our ideas of how the HIV virus develops into the AIDS disease within the 
highly controlled environment of computer simulation. Based on these insights, 
we can suggest new experiments on the actual system and update our models 
accordingly. 
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1 Introduction 

Worldwide, it is estimated that one million people died from AIDS every year and 
another 30 million live with the disease (WHO, 1990). The cause of the HIV-AIDS 
disease seems now well established and its prevention well understood. Scientists from 
various research backgrounds have been working hard to improve the understanding of 
the disease progression; however, mathematical modelling and statistical approaches 
have been only lately introduced in this research in order to better understand the disease 
dynamic in a quantitative manner and predict important features such as appropriate drug 
dosage, the thresholds of various parameters that affect the progression of the disease and 
many others (Anderson et al., 1986; Anderson and May, 1991; Anderson and Garnett, 
2002). It should be underlined that dynamic models and computer simulations are 
experimental tools for comparing regions or risk groups, testing theories, assessing 
quantitative conjectures and answering relevant questions. Basically, there are three 
approaches to the modelling of HIV-AIDS. The first and more direct approach is to 
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predicting AIDS in the future by extrapolation (Morgan and Curran, 1989; Carr, 1981; 
Butler and Waltman, 1986). This method fits the hypothetical form of the AIDS 
incidence data in recent years and then extends this curve by several years as a prediction 
of AIDS cases in the future. This method assumes that the current trends will continue for 
at least a few years in the future. Often separate curves and extrapolations are done for 
various risk groups. Some advantages of extrapolation are its simplicity and ease of use. 
The extrapolation method is a good predictor of AIDS incidences for a few years into the 
future, but it is not good for longer future forecasts because it does not consider changes 
in the HIV epidemic group due to factors such as behavioural changes or saturation in the 
high risk group, and also it does not give information on HIV incidence or mechanisms 
(Bollinger et al., 1997). The second approach is based on back calculation (Butler and 
Waltman, 1986; Gibbs and Tess, 1999). The total number of AIDS cases at time t is the 
summation up to time t of the product of the HIV incidence at time τ and the probability 
of developing AIDS within t – τ years after infection. Thus, if the HIV incidence and the 
distribution of the AIDS incubation period were known up to time t, then the cumulative 
number of AIDS cases may be calculated in a straightforward manner. Back calculation 
is a deconvolution process – it uses a given AIDS incidence up to time t and an estimated 
distribution for the AIDS incubation period to estimate the HIV incidence up to time t 
(Morgan and Curran, 1989). This incidence up to time t and its extrapolation for several 
years are then used to forecast the AIDS incidence for a period of several years. 

The distribution of the incubation period for AIDS can be estimated parametrically or 
non-parametrically (Aggarwal et al., 1997). This method has the advantage that it also 
yields estimates of HIV incidence. However, there are several disadvantages: it does not 
yield information on the HIV transmission dynamic or estimates of parameter values. 
Estimated distributions for the AIDS incubation period are uncertain and the back 
calculation procedure is very sensitive to the distribution used (Diekmann and Metz, 
1990). This instability of the back calculation process implies that the confidence 
intervals of estimates of HIV incidence and future AIDS incidence are very wide. Finally, 
the third approach to modelling AIDS is to use HIV transmission dynamic models which 
include the progression to AIDS. These models often have populations divided into 
compartments consisting of those who are susceptible in each of the infection stages, or 
in the AIDS phase. In deterministic transmission models, the movement between these 
compartments by becoming infected, progressing to the next stage or AIDS migrating or 
dying is specified by system of difference or differential equations (Smith, 1988). 
Modelling can also be used to theoretically evaluate, compare or optimise various 
detection, prevention, intervention and control programs. HIV-AIDS transmission 
dynamic models are stochastic with various probabilities of moving to the next stage at 
each time step. Morgan and Curran (1989) investigated the relationship between  
Monte Carlo simulations of stochastic HIV-AIDS models and solution of deterministic 
model using the expected values. Further, Nowak and May (1991) looked at a general 
stochastic model of the simulation of HIV transmission and AIDS. However, these 
models suffer from lack of flexibility and adaptability. Also until now almost all 
proposed models being used are of deterministic form, and are sometimes speculated to 
be approximations of stochastic models (Gibb and Tess, 1999; Mukandavire et al., 2007). 
Explicit stochastic models have not yet been used. In this work, we propose a new model 
which takes into consideration the sensitivity of the disease propagation and time delay in 
both the susceptible and infected subpopulations. Our model is an integrative version of 
the system of stochastic delayed differential equation SSDDEs introduced earlier in 
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(Jimbo and Craven, 2011; Jimbo and Mathew, 2012) for modelling complex dynamical 
systems. Our paper is organised as follows: In Section 2, we introduce the novel model. 
In Section 3, we present the simulation results, we also show the superiority of this model 
over the existing models. In Section 4, we develop and present the local stability of 
disease free equilibrium. We finally end this work in Section 5 with a short conclusion. 

2 Modelling framework 

The hypothetical model of HIV-AIDS divides the population into sub-populations of 
susceptible individuals (S), HIV infected with no clinical symptoms of AIDS (I) and HIV 
infected individual with AIDS symptoms (A). We assume that the susceptible individuals 
are recruited into the population at per capital rate Λ and susceptible individual acquire 
HIV infection following contact with HIV-infected individual at a rate λ. Without loss of 
generality and spending too much time on biological aspect of the problem, we turn to the 
mathematical interpretation of biodynamic and derive the equations of the 
epidemiological model which is the extension of previous models that have been recently 
proposed. 

2.1 Previous model 

2.1.1 Deterministic epidemiological model 
The model dynamic considers the chart flow (Figure 1) where S, I and A represent 
respectively the suspected, infected without and with symptoms of AIDS individuals. The 
variables b represents the birth rate, k the transmission rate from susceptible to infected 
and r the recovery rate d0 the death rate that can increase or decrease depending on the 
population. We assume that the time course of the disease in a given population is short 
compared to the lifespan of the individuals, so that there is no self-reconstitution. 

Figure 1 Schematic representation of disease dynamic 

 

At a given point in time, part of a population P is infected at a rate α and among the 
infected population a proportion will develop the disease at a rate β. Following the 
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schematic representation of disease dynamic in Figure 1, we derive the system of 
equations: 

 = −

 = −


dS bS kIS
dt
dI kIS rI
dt

 (1) 

As a first stage simplification, we put ( ) 0=dA t
dt

 where S and I represent respectively the 

suspected and infected individuals (populations) in the non-fatal disease consideration. 

Figure 2 Compartmental representation of disease dynamic (see online version for colours) 

 

2.2 Novel model 

2.2.1 Stochastic epidemiological model 
The stochastic model of HIV-AIDS disease progression is relatively new. Although the 
field of epidemiology has a long well established history, it is only within the past several 
decades that mathematicians and epidemiologists have begun to work together to create 
model that attempts to predict the progression of disease in given population. Here, we 
propose a new model to analyse the dynamic of the disease and its progression. Our 
model is based on a system of delay stochastic differential equations (DSDEs) used to 
capture various scenarios of evolution of disease in a chosen population. We believe that 
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introducing independent time delays in susceptible and incident dynamic will not only 
improve the model by capturing more interesting features but also support idea of 
nonlinear progression of disease that has already been observed in several patient at 
hospitals (Brauer and Castillo-Chavez, 2001; Jimbo and Craven, 2011). We now state the 
continuous time stochastic differential equation for the model. This is a system of 
nonlinear initial value stochastic differential delay equations (SDDEs). We assume that 
the probability distribution noise in susceptible and infected dynamics is of different 
nature. In susceptible dynamic, the noise is normally distributed with men 0 and variance 
σ2 rather in incident dynamic the noise is Poisson distributed with mean λ = 2. 

( )

( )

( ) ( ) ( )

( ) ( ) ( )

 = − − +

 = − − +


S S

I I

dS t b kI S t τ ξ t
dt

dS t kS r I t τ ξ t
dt

 (2) 

where ξS(t) ~ N(0, σ2); ξI(t) ~ P0(2) represent the sources of extrinsic noise, τS, τI are 
respectively the Susceptible and Infected individual delays and contribute to the intrinsic 
noise source of noise. There is no possible correlation between ξS(t) and ξI(t) noise 
dynamics. For this reason, we set corr(ξS(t), ξI(t)) = 0. Next, we perform the simulation of 
the model and present some new results. 

3 Simulation and result 

Using MATLAB software, we produce the solutions that follow. 

3.1 Setup 

The simulation parameters are set according biophysical, biodynamical and clinical 
considerations (Diekmann and Metz, 1990; Nowak and May, 1991; Nicolosi and 
Musicco, 1994). It is generally agreed that biochemical, biophysical and biodynamical 
parameters often depend on the state of the patients and or drug consumption. In healthy 
individual, these parameters are stable, but in unhealthy patients, they tend to me more 
unstable or noisier (Van Den Driessche and Watmough, 2002). Relaying on the above 
assumptions and the data that have being used in Castillo-Chavez et al. (2002) lead us to 
the following parameter specifications. 

Specification of the parameters of the model 

0 0

0.001; 0.04; 0.02; 0.001
100; 1; 3; 10

= = = =
= = = =

s

s I

b k r t
S τ τ I

 

3.2 Results 

The results present the results of the simulation. 
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Figure 3 Summarisation of the effect of the parameters on the distribution of the incidence 
population over generation periods (see online version for colours) 

 

 

Note: It is clear that over generation time the shape of the distribution tends to become 
normalised. 
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Figure 3 Summarisation of the effect of the parameters on the distribution of the incidence 
population over generation periods (continued) (see online version for colours) 

 

 

Note: It is clear that over generation time the shape of the distribution tends to become 
normalised. 
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Figure 4 Solutions for S(t), I(t) (see online version for colours) 

 

 

Notes: It can be seen that over time, while I(t) reaches its maximum, S(t) reaches it 
minimum at the same time indicating that as the number of incident population 
will decrease the number of susceptible population will increase. 
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Figure 4 Solutions for S(t), I(t) (continued) (see online version for colours) 

 

 

Notes: It can be seen that over time, while I(t) reaches its maximum, S(t) reaches it 
minimum at the same time indicating that as the number of incident population 
will decrease the number of susceptible population will increase. 
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Figure 5 Scatter plot of I(t) population (see online version for colours) 

 

 

Notes: We observe an acceleration of the number of incident population around the peak 
level and considerable reduction of this number as we move further to the 
maximum, this shows the positive effect of learning over time. 
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Figure 5 Scatter plot of I(t) population (continued) (see online version for colours) 

 

 

Notes: We observe an acceleration of the number of incident population around the peak 
level and considerable reduction of this number as we move further to the 
maximum, this shows the positive effect of learning over time. 
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Figure 6 Solution S(t) (see online version for colours) 

 

 

Notes: It can be seen that over time, the number of susceptible population reduces 
considerably indicating that as people know more about the risk exposure they 
tend to be more cautious. 
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Figure 6 Solution S(t) (continued) (see online version for colours) 

 

 

Notes: It can be seen that over time, the number of susceptible population reduces 
considerably indicating that as people know more about the risk exposure they 
tend to be more cautious. 
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4 Local stability and disease – free equilibrium 

Let us assume the total interacting sub-populations equals to N(t) = S(t) + I(t) + A(t). It is 
known that natural death occurs in all human sub-population at rate μ and recruitment 
rate Λ. Further, there is a HIV-AIDS constant δ in AIDS class. We extend model (2) and 
recall the following: 

( )

( )

( )( ) Λ ( )         

( )( ) ( ) ( )

− ′ = − − +
 + ′ = − − − +


S S

I I

b kIS t t τ ξ t
N

I ηAI t μ k I t τ ξ t
N

 (3) 

Assumption 1: At equilibrium 
Δ 1

.
( ) ( )

S I

S I

t τ t τ t
ξ t ξ t ε
− = − = =


  

 

Applying Assumption 1, equation (3) becomes 

( )( ) Λ        

( )( ) ( )

− ′ = −
 + ′ = − −


b kI SS t
N

I ηAI t μ k I
N

 (4) 

with A’ = kI – (μ + δ)A. 

Assumption 2: Consider the region 3
1{( , , ) : Λ / }.= ∈ ≤S I A R N μφ  Any solution of 

model (4) starting in φ remain in φ for all t ≥ 0, thus φ is positively invariant. 

The HIV-AIDS model (4) has a disease – free equilibrium given by 0
Λ , 0, 0 ; =  

 
ε

μ
 it is 

obvious that ε0 attract the region stable manifold ε0: 

 0 {( , , ) : 0}= ∈ = =S I A I Aφ φ  

The linear stability of R0 is governed by the basic reproductive number R0. The stability 
of this equilibrium will be investigated using the next generation operator (Smith, 1988; 
Carr, 1981; Jimbo and Craven, 2011). Using the notation in Mehendale et al. (1996) and 
Mukandavire et al. (2007) on model system (2), the matrices F and V for the new 
infection terms and the remaining transfer terms are respectively given by: 

0
and

0 0
+   

= =   − +   

η μ k
F V

k μ δ
β β β

 (5) 

As in Assumption 1, it follows that the basic reproductive number, denoted by R0 and 
given by: 

( )1
0

( )
( )( )

− + += =
+ +
δ kη μR ρ FV

k μ δ μ
β  (6) 
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Lemma 1: The disease-free equilibrium of HIV-AIDS model of system of equation (4) is 
locally asymptotically stable if R0 < 1 and unstable if R0 > 1. 

The basic reproductive number measures the average number of new infections generated 
by a single infected individual in a completed susceptible population. Thus, Lemma 1 
implies that HIV-AIDS can eliminated from the community (when R0 < 1) if the initial 
sizes of the sub-populations of the model are in the basin of attraction of the disease –free 
equilibrium ε0. 

Theorem 1: Whenever R0 < 1, the disease-free equilibrium of the simplified model (4) is 
given by ε0 which is globally stable in φ and unstable in R0 > 1. 

Proof: We consider the following Liapunov function ℓ: ℓ = (μ + δ + μη)I(t) + η(μ + κ)A(t), 
its derivative along the solution to model (4) is ℓ’ (μ + δ + μη)I’(t) + η(μ + κ)A’(t). 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )

Sμ δ μη β I ηA μ κ I η μ κ κI μ δ A
N

Sμ δ μη μ δ ηκ μ δ μ κ I
N

Sη μ δ ηκ μ δ μ κ A
N

S Sμ δ ηκ μ δ μ κ I η μ δ ηκ μ δ μ κ A
N N

 ′ = + + + − + + + − + 
 
 = + + + + − + + 
 

 + + + − + + 
 

   = + + − + + + + + − + +   
   



β

β

β β

 

We apply the approximation for S ≤ N ≤ (β(μ + δ + ηκ) – (μ + δ)(μ + κ)I) + η(β(μ + δ + 
ηκ) – (μ + δ)(μ + κ)A) = (μ + δ)(μ + κ)(R0 – 1)I + η(μ + δ)(μ + κ)(R0 – 1)A ≤ 0 for R0 < 1. 
Assuming that all the model parameters and non-negative, it follows that ℓ for R0 < 1 with 
ℓ if and only if I = A = 0. Thus, ℓ is a Liapunov function on φ. Since φ is invariant and 
attracting, we have that the largest compact invariant set in {(S, I, A) ∈ φ: ℓ = 0 is the 
singleton {ε0}, and by the LaSalles’s invariant principle (LaSalle, 1976), any solution of 
equation (4) with initial condition in φ approaches ε0 as t → +∞. Finally, we have 
obtained that (S(t), I(t), A(t)) → (Λ / μ, 0, 0) and ε0 is globally asymptotically stable in φ 
as long as R0 < 1. 

5 Conclusions 

The study of HIV-AIDS dynamical model is proposed in this work. The Liapunov 
function and LaSalle’s invariant principle are used to provide global stability of the 
equilibrium of the model. We show that the model is positively invariant. Further, the 
basic reproduction number expression is derived using the next generation matrix 
method. We also do some analysis on the stability of the steady points of the model. 
Finally our result shows that the disease can be well controlled when R0 < 1. The 
advantage of this approach is that it is not reliant much on parameters. Its disadvantage, 
however, is that it is largely dependent on assumptions that might not be verifiable. 
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