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Abstract: Differential cryptanalysis is considered as a powerful technique
in the field of cryptanalysis, applied to symmetric-key block ciphers. It is
a kind of chosen plaintext attack in which the cryptanalyst has some sets
of the plaintext and the corresponding ciphertext pairs of his choice. These
pairs of the plaintext are related by a constant difference. Generally, it is
the analysis of how differences in input information can affect the resultant
difference at the output. In this paper, we present step by step implementation
of differential cryptanalysis of data encryption standard (DES) up to 8-rounds.

Keywords: block cipher; data encryption standard; DES; differential
cryptanalysis; key schedule algorithm; substitution permutation network; SPN.

Reference to this paper should be made as follows: Tiwari, V., Singh, A.
and Tentu, A.N. (2019) ‘Differential cryptanalysis on DES cryptosystem up
to eight rounds’, Int. J. Information Privacy, Security and Integrity, Vol. 4,
No. 1, pp.1–29.

Biographical notes: Vikas Tiwari received his MTech in Artificial
Intelligence from University of Hyderabad, India in 2016. Currently, he is
working as a Senior Researcher at C.R. Rao AIMSCS, Hyderabad, India.
He has published eight research articles in reputed international journals
and conferences. His research interests are in the areas of cryptography,
cryptanalysis, machine learning and computer networks.

Ajeet Singh obtained his MTech in Computer Science from University of
Hyderabad, India in 2016. Currently, he is working as a Senior Researcher
in C.R. Rao AIMSCS, Hyderabad, India. He has published eight research
articles in reputed international journals and conferences. His research areas
of interest include machine learning, cryptography, systems simulation and
modelling, rough sets, knowledge discovery, cryptozoology and oneirology.

Appala Naidu Tentu is an Assistant Professor at C.R. Rao AIMSCS,
Hyderabad, India. He received his PhD in Computer Science and Engineering
from JNTU Hyderabad. He obtained his Master of Technology in Systems

Copyright © 2019 Inderscience Enterprises Ltd.



2 V. Tiwari et al.

Analysis and Computer Applications from NIT, Suratkal, Karnataka and
Master of Science (MSc) from Andhra University. He published more than
20 research papers in reputed international journals and conferences. His
research interests are in the areas of cryptography, cryptanalysis and design
of security protocols.

1 Introduction

Cryptosystems are generally divided in two types: symmetric key cryptosystems, where
the same key is used by the sender and the receiver for encryption and decryption
respectively. So the key need to be kept private. Hence the symmetric key cryptosystems
are also known as private key cryptosystems. The secure distribution of key associated
with symmetric key cryptosystems is a challenging task. Data encryption standard (DES)
and advanced encryption standards (AES) are examples of symmetric key cryptosystems
(Stinson, 2006; Stallings, 2006). Unlike symmetric key cryptosystems, asymmetric key
cryptosystems, use two keys, called private key and public key. they relay on one key
for encryption and the other for decryption. These two keys are different but are related.
The RSA algorithm is an example of an asymmetric key cryptosystem.

The differential cryptanalysis was introduced by Biham et al. in 1990. It is one of the
seminal work in the area of cryptanalysis. It is a chosen plaintext attack. In differential
cryptanalysis, the main task is to study the propagation of differences from round to
round inside the cipher and find specific differences, which propagate with relatively
high probability. Such pairs of input-output differences can be used to recover some bits
of the secret key (Feistel, 1973).

2 Related work

Firstly, IBM designed an iterated cryptosystem called Lucifer (Feistel, 1973), to
overcome the increasing information security need for the data in its products. The
complete design and structure of the data encryption standard is given in National
Bureau of Standards (1977). The procedure of formal coding, where formal expression
of each bit in the ciphertext is the XOR form of the bits of the plaintext and the
key was presented in Hellman et al. (1976). The manipulations in a formal way of
these expressions may reduce the key search attempt. Schaumuller-Bichl (1981, 1982)
explored this method and formulated that it needs a significant amount of system
memory, which makes the idea impractical. In 1987, Davies gave a known plaintext
cryptanalytic attack on DES. Over the past years, several cryptosystems which are
variations of DES were presented. Schaumuller-Bichl (1981, 1983) proposed three such
types of cryptosystems. Another such variation is the fast encryption algorithm (FEAL).
It was designed to be more efficient and implementable on an 8-bit microprocessor. It’s
first version had four rounds (Shimizu and Miyaguchi, 1987a) and it was broken by
Den Boer (1988) using a chosen plaintext attack. The inventors of FEAL then gave a
new version, called FEAL-8, with 8-rounds (Shimizu and Miyaguchi, 1987b; Miyaguchi
et al., 1988). Tiwari et al. (2017) given the attack on DES on 3 and 6-rounds.
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2.1 Motivation and contribution

Block cipher is a procedure for encrypting plaintext where key and algorithm are
applied to a data block. An example of such a symmetric key cryptosystem is DES.
Originally in 1970s, it was developed by IBM. Later many researchers have performed
cryptanalysis on DES up to specific rounds. Even though the theoretical cryptanalysis
exist in literature, but the practicality of these scenarios is not available up to more
number of rounds on DES. The key contributions in this paper are as:

• in our experimentation in this paper, we have performed our cryptanalysis on
reduced 3-round, 4-round, 5-round as well as 6-round DES and we could be able
to retrieve the correct key

• we further extended our attack procedure and later we performed cryptanalysis on
reduced 7-round and 8-round DES.

2.2 Organisation of the paper

Rest of the paper is organised as follows: Section 3 discusses some required
preliminaries. In Section 4, we have discussed differential cryptanalysis on 3 round
DES. In Section 5, attack on 4-round DES is given. Subsequently, for 5-round attack
on DES is discussed in Section 6. Section 7 discusses about the attack on 6-round DES.
Cryptanalysis for 7 and 8-rounds is given in Section 8. Finally, Section 9, concludes the
paper.

3 Preliminaries

3.1 Description of data encryption standard

DES is based on the Feistel structure. DES has 16 rounds (National Bureau of Standards,
1977). Its structure is shown in Figure 1.

We have 64 bit plaintext block and a 64 bit key as input to the encryption algorithm.
The 64 bit plaintext block goes through initial permutation (IP) and this permuted output
passes through all 16 rounds. The output of the 16th round passes through 32 bit swap
and then to the inverse initial permutation to give 64 bit ciphertext block. The 64 bit key
is mapped into 56 bit using permuted choice 1 (PC-1). Then in each round, different 48
bit subkey Ki is given after passing it through left circular shift and permuted choice 2
(PC-2).

3.1.1 Round function

The internal structure of round function is same in all rounds as it is based on feistel
structure. It is shown in Figure 2.
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Figure 1 DES encryption

Figure 2 Round function structure
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After IP, the plaintext is divided into L and R. This R becomes new L of the next round
and new R is the x-or of the previous round L and output of the F function. The whole
process can be explained by the following equations:

Li = Ri−1 (1)

Ri = Li−1 ⊕ F (Ri−1,Ki) (2)

The 32 bit Ri−1 is expanded to 48 bits using the expansion table. This 48 bit output is
xor-ed with key Ki of 48 bits. Now, this resulting 48 bits is passed through s-boxes to
get 32 bits which are further permuted and xor-ed with Li−1 to get Ri.

The functioning of s-box is shown in Figure 3.

Figure 3 S-box details

The expanded 48 bit output is xor-ed with 48 bit key and given as input to the eight
s-boxes each of which takes 6 bit as input and gives 4 bit output. So this 48 bit xor-ed
output is divided into eight blocks of 6 bit each and each of them is given as input to
the s-boxes. These 48 bits get transformed into 32 bits as four bit output is obtained
from each s-box.

Now, this 32 bit output is permuted and xor-ed with L to get new R.

3.1.2 Key generation

From Figures 2 and 3, we can observe how key is used in the algorithm. The 64-bit
key goes through PC-1 where every eighth bit of the key is ignored and converted to
56-bit key. Now this 56 bit key is partitioned into two halves C and D of 28 bit each.
In each round these two halves goes through circular left shift of 1 or 2 bits depending
on the round separately. These shifted halves are given as input to the next round. For
the current round these shifted halves are fed to the PC-2 to produce 48 bit key which
is used in F (Ri−1,Ki) function.
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3.2 Substitution permutation network

It is a mechanism similar to Fiestel network that is used to design a block cipher. Here
substitution does confusion and permutation does diffusion (Feistel, 1973; Heys and
Tavares, 1996).

Confusion is described as being “the use of enciphering transformations that
complicate the determination of how the statistics of the ciphertext depend on the
statistics of the plaintext”. This is achieved by using a complex substitution algorithm.
While diffusion dissipates the statistical structure of the plaintext within the ciphertext
so that attacker cannot determine plaintext corresponding to the ciphertext.

The principle of diffusion and confusion is achieved by applying substitution and
permutation to the plaintext over and over again. Iterated block cipher is based on this
principle. Thus substitution permutation network (SPN) is a type of iterated block cipher.
A basic SPN structure is shown in Figure 4.

Figure 4 Basic SPN structure
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It has four rounds. Each round consists of substitution, permutation and key mixing.
The input size of plaintext is 16 bit and the key size is 32 bit. Firstly we convert our
32-bit key into round keys of 16-bit each with help of key scheduling algorithm. Now
each of these round key is xor-ed with the input it gets in every round. SPN cipher takes
16-bit block of plaintext as input and divides it into four sub-blocks of 4-bits each. Now
each of these sub-block goes into key mixing block. After key mixing, it goes to the
S-box. The input and output mapping of s-boxes is shown in Table 1. The fundamental
property of an S-box is that it is a nonlinear mapping, that is, the output bits can not be
represented as a linear function of the input bits.

Table 1 Substitution box

I/P 0 1 2 3 4 5 6 7 8 9 A B C D E F

O/P E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Output of s-box is permuted as per the relation given in Table 2. P-box performs the
permutation of the bit position.

Table 2 Permutation box

I/P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O/P 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

4 Attack on 3-round DES

Though DES has 16 rounds but for cryptanalysis we consider reduced DES with ‘n’
rounds where n = 3. For this attack we have neglected initial permutation (IP) and its
inverse as they do not have effect on cryptanalysis (Stinson, 1995; Biham and Shamir,
1990). To attack 3-round DES, suppose we have a plaintext pair L0R0 and L∗

0R
∗
0 and

corresponding ciphertext pair L3R3 and L∗
3R

∗
3. The plaintext pair L0R0 and L∗

0R
∗
0 are

chosen so that R0 = R∗
0, 3-round DES structure is shown in Figure 5.

From this figure we can express R3 as:

R3 = L2 ⊕ f(R2,K3) (3)

Since L2 and R1 are equal,

R3 = R1 ⊕ f(R2,K3) (4)

Further R1 can be expressed as:

R3 = L0 ⊕ f(R0,K1)⊕ f(R2,K3) (5)

On giving L∗
0R

∗
0 as input to Figure 5, R∗

3 can be expressed as,

R∗
3 = L∗

0 ⊕ f(R∗
0,K1)⊕ f(R∗

2,K3) (6)
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Figure 5 3-round DES structure

R′
3 is the xor-ed difference of R3 and R∗

3. So, R′
3 = R3 ⊕R∗

3.

R′
3 = L0 ⊕ f(R0,K1)⊕ f(R2,K3)⊕ L∗

0 ⊕ f(R∗
0,K1)⊕ f(R∗

2,K3) (7)

As L0 ⊕ L0∗ = L′
0,

R′
3 = L′

0 ⊕ f(R0,K1)⊕ f(R∗
0,K1)⊕ f(R2,K3)⊕ f(R∗

2,K3) (8)

Since R0 = R∗
0 we get,

R′
3 = L′

0 ⊕ f(R2,K3)⊕ f(R∗
2,K3) (9)

We know R′
3 and L′

0 so we can rewrite above equation as,

R′
3 ⊕ L′

0 = f(R2,K3)⊕ f(R∗
2,K3) (10)

Let H and H∗ be the two outputs of the eight s-boxes then,

f(R2,K3) = P (H) and f(R∗
2,K3) = P (H∗)

where P is the permutation function. Then,

P (H)⊕ P (H∗) = f(R2,K3)⊕ f(R∗
2,K3)

H ′ = H ⊕H∗ = P−1(R′
3 ⊕ L′

0) (11)

Now, R2 = L3 and R∗
2 = L∗

3 are also known so we can compute,

G = E(L3) (12)
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and

G∗ = E(L∗
3) (13)

using the expansion function E. G and G∗ are the input to the s-boxes in the third
round. The attack on 3-round DES using the triplet G, G∗ and H ′ is as follows.

Let the plaintext pairs and the corresponding ciphertext pairs be:

L0R0 : ‘37580B1359ACEE20’
L3R3 : ‘34E9174A5A2CB621’
L∗
0R

∗
0 : ‘264A020E59ACEE20’

L∗
3R

∗
3 : ‘023E68A49B1423D6’

From these pairs, find the s-box inputs for round 3 from equations (12) and (13). That
is expand L3 and L∗

3 to 48 bits to get:

G = 000110101001011101010010100010101110101001010100
G∗ = 000000000100000111111100001101010001010100001000

We know that input to the s-boxes is I = G⊕K where K represents the round key.
The exclusive or (x-or) of the inputs of the eight s-boxes is:

I ⊕ I∗ = (G⊕K)⊕ (G∗ ⊕K) (14)

Thus, I ⊕ I∗ = G⊕G∗. So from this we can conclude that input x-or does not depend
on the key bits K.

G′ = G⊕G∗

G′ = 000110101101011010101110101111111111111101011100

The output of the s-boxes H ′ is computed using equation (11).

L′
0 = L0 ⊕ L∗

0

L0 = 00110111010110000000101100010011
L∗
0 = 00100110010010100000001000001110

L′
0 = 00010001000100100000100100011101

R′
3 = R3 ⊕R∗

3

R3 = 01011010001011001011011000100001
R∗

3 = 10011011000101000010001111010010
R′

3 = 11000001001110001001010111110011

R′
3 ⊕ L′

0 = 11010000001010101001110011101110

H ′ = P−1(R′
3 ⊕ L′

0)

= 01011010000011010010111000100111

Here P−1 is inverse permutation which is shown in Table 3.
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Table 3 Inverse permutation

9 17 23 31
13 28 2 18
24 16 30 6
26 20 10 1
8 14 25 3
4 29 11 19
32 12 22 7
5 27 15 21

Now we have G, G∗ and H ′. For 1 ≤ i ≤ 8, every six bits in G′ (G′
i) and four bits

in H ′ (H ′
i), we will find pairs whose x-or equal is to G′

i and on giving these pairs as
input to the s-box Si their output x-or is equal to H ′

i .
Let these pairs be denoted using Pairs(G′

i, H ′
i). If we knew G and G∗ we could say,

Gi ⊕Ki ∈ Pairs(G′
i,H

′
i) (15)

From equation (15), we can conclude that to find key value we can x-or the
Pairs(G′

i, H ′
i) value with G value. Next step is to tabulate these key values in eight

counter array Ji. As each Ki is of 6 bits which would mean 0 to 63 in decimal, the
array Ji would range from 0 to 63.

Continuing with previous example, we will find Pairs(G′
i, H ′

i) using first 6 bits of
the G′

1 and first 4 bits of the H ′
1,

Pairs(000110, 0101) = {110010, 110100}

Here G1 = 000110, using equation (15),

K1 ∈ G1 ⊕ Pairs(000110, 0101) = {110100, 110010}

Thus we will increment values 52(110100) and 50(110010) in the counter array J1.
For next pair G′

2 and H ′
2, the values will be incremented in the counter array J2 and

so on. We will repeat this process for all pairs in G′ and C ′. This whole method will be
performed with more plaintext-ciphertext pairs until we get a unique value in each of
the eight counter arrays J. The position of these unique values determine the key bits.

To get the initial 64-bit key we have to perform few more computations on the result
obtained from these eight counter arrays. This is experimentally done and results are
attached below.

We have taken three plaintext-ciphertext pairs and computed their G, G∗, G′ and H ′

as explained above. Then found the Pairs(G′
i, H ′

i) for 1 ≤ i ≤ 8 and finally J values to
be incremented in the eight counter arrays. These pairs are shown below denoted with
L0R0, L∗

0R
∗
0, L3R3 and L∗

3R
∗
3.

L0R0 = 748502CD38451097 L3R3 = 03C70306D8A09F10
L∗

0R
∗
0 = 3874756438451097 L∗

3R
∗
3 = 78560A0960E6D4CB

L0R0 = 486911026ACDFF31 L3R3 = 45FA285BE5ADC730
L∗

0R
∗
0 = 375BD31F6ACDFF31 L∗

3R
∗
3 = 134F7915AC253457

L0R0 = 357418DA013FEC86 L3R3 = D8A31B2F28BBC5CF
L∗

0R
∗
0 = 12549847013FEC86 L∗

3R
∗
3 = 0F317AC2B23CB944
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For the first pair, the incremented position numbers are in the eight counter arrays
J1, J2, . . . , J8.

Pairs(0, 9) = 0, 7, 40, 47, J1 = 0, 7, 40, 47

Pairs(7, 6) = 2, 53, 12, 59, J2 = 5, 50, 11, 60

Pairs(56, 5) = 4, 54, 20, 38, 21, 39, 25, 43, J3 = 60, 14, 44, 30, 45, 31, 33, 19

Pairs(14, 13) = 50, 39, 14, 44, 18, 48, J4 = 11, 41, 0, 34, 28, 62

Pairs(32, 5) = 25, 56, J5 = 57, 24

Pairs(6, 11) = 1, 19, J6 = 7, 21

Pairs(32, 6) = 6, 39, 13, 44, J7 = 28, 7, 45, 12

Pairs(12, 7) = 35, 61, 36, 58, J8 = 47, 49, 40, 54

The output for the second pair is given below. In the same eight counter arrays we
incremented the values according to the output shown below:

Pairs(40, 9) = 7, 13, 52, 62, J1 = 47, 37, 28, 22

Pairs(11, 12) = 3, 46, 8, 37, 14, 35, 26, 55, 30, 51,

J2 = 8, 37, 3, 46, 5, 40, 17, 60, 21, 56

Pairs(63, 9) = 44, 58, J3 = 5, 19

Pairs(52, 12) = 0, 42, 1, 43, 10, 32, 11, 33, 20, 62, 21, 63, 30, 52, 31, 53,

J4 = 52, 30, 53, 31, 62, 20, 63, 21, 32, 10, 33, 11, 42, 0, 43, 1

Pairs(5, 1) = 17, 59, 29, 55, J5 = 20, 62, 24, 50

Pairs(16, 15) = 4, 38, 23, 53, J6 = 20, 54, 7, 37

Pairs(11, 5) = 0, 41, 9, 32, 12, 37, 14, 39, J7 = 11, 34, 2, 43, 7, 46, 5, 44

Pairs(54, 6) = 0, 0, J8 = 54, 54

Finally, third pair gave the values for eight counter arrays as given below:

Pairs(59, 13) = 4, 62, 20, 46, 26, 32, J1 = 63, 5, 47, 21, 33, 27

Pairs(49, 5) = 2, 45, 11, 36, 27, 52, J2 = 51, 28, 58, 21, 42, 5

Pairs(20, 7) = 7, 53, 16, 34, J3 = 19, 33, 4, 54

Pairs(6, 5) = 6, 34, 12, 40 J4 = 0, 36, 10, 46

Pairs(35, 13) = 17, 29, 37, 41, 55, 59, J5 = 50, 62, 6, 10, 20, 24

Pairs(54, 11) = 1, 2, 5, 6, 17, 18, 49, 50, 53, 54, 57, 58,

J6 = 55, 52, 51, 48, 39, 36, 7, 4, 3, 0, 15, 12

Pairs(37, 2) = 3, 62, 7, 58, 9, 52, 26, 39, 27, 38, 31, 34,

J7 = 38, 27, 34, 31, 44, 17, 63, 2, 62, 3, 58, 7

Pairs(31, 11) = 46, 53, J8 = 49, 42

At last, we get our J arrays for three rounds. In these arrays we got the unique values
at:

J1 : 47, J2 : 5, J3 : 19, J4 : 0, J5 : 24, J6 : 7, J7 : 07, J8 : 49
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We convert these integer values into binary to get 48 bits. We will use key schedule
for round three in DES (Biham and Shamir, 1993; Heys and Tavares, 1996; National
Bureau of Standards, 1977) to get 48 bits of the key as shown below in Table 4.

Table 4 Key schedule for round 3

51 27 10 36 25 58 9 33 43 50 60 18
44 11 2 1 49 34 35 42 41 3 59 17
61 4 15 30 13 47 23 6 12 29 62 5
37 28 14 39 54 63 21 53 20 38 31 7

This key schedule is for 56 bits, so the rest of the bits will be unknown. Also, our key
is of 64-bits. These extra 8 bits are parity bits which will be added based on odd parity.
Since very few bits are unknown, we can apply exhaustive search and then calculate
odd parity over them. The complete key (in hexadecimal format) is:

‘1A624C8520DEC46’

5 Attack on 4-round DES

We extend the idea of attacking 3-round DES by using probability characteristic to
mount attack on 4-round DES. The structure of 4-round DES is given in Figure 6.
Before that we define n-round probability characteristic.

n-round probability characteristic: Let n ≥ 1 be an integer: an n-round characteristic is
a list of the form

L′
0, R

′
0, L

′
1, R

′
1, p1, ...L

′
n, R

′
n, pn.

which satisfy the following properties:

• L′
i = R′

i−1 for 1 ≤ i ≤ n.

• For 1 ≤ i ≤ n, let Li−1, Ri−1 and L∗
i−1, R

∗
i−1 be chosen such that

Li−1 ⊕ L∗
i−1 = L′

i−1 and Ri−1 ⊕R∗
i−1 = R′

i−1. Suppose Li, Ri and L∗
i , R

∗
i are

computed by applying one round of DES encryption. Then the probability that
Li ⊕ L∗

i = L′
i and Ri ⊕R∗

i = R′
i is precisely pi. (Note that this probability is

computed over all possible 8 tuples C = C1C2...C8.)

The probability of the characteristic is defined to be the product p = p1 × p2 × . . . pn.
To mount an attack on n-round DES we will be using n-3 round characteristic. For

suppose, to mount attack on 4-round DES we will use 1-round characteristic, which is
shown in Table 5.

Table 5 1-round characteristic

L′
0 = 40080000 R′

0 = 04000000

L′
1 = 04000000 R′

1 = 00000000 p = 1/4
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Figure 6 4-round DES structure

Even though we can have a probability characteristic with better probability like p =
1/2 or p = 1, we are not using such characteristic so that we can have R′

1 = 00000000
which expands to be all zeros. This helps us in getting key bits entering all eight s-boxes.
That is we can get 48 bits of key.

Now, we formulate the expression for output xor of s-boxes in fourth round and
inputs to the fourth round as we did in previous section.

plaintext pair: L0R0, L
∗
0R

∗
0

ciphertext pair: L4R4, L
∗
4R

∗
4

We can express R4 and R∗
4 in terms of R0 and R1 as follows:

R4 = L3 ⊕ f(R3,K4)

R4 = R2 ⊕ f(R3,K3)

R4 = L1 ⊕ f(R1,K2)⊕ f(R3,K4)

R4 = R0 ⊕ f(R1,K2)⊕ f(R3,K4)

R∗
4 = R∗

0 ⊕ f(R∗
1,K2)⊕ f(R∗

3,K4)

So when we xor R4 and R∗
4

R′
4 = R′

0 ⊕ f(R1,K2)⊕ f(R3,K4)⊕ f(R∗
1,K2)⊕ f(R∗

3,K4)
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From the probability characteristic R′
1 = 00000000. So R1 = R∗

1. Then f(R1,K2) =
f(R∗

1,K2). So f(R1,K2)⊕ f(R∗
1,K2) = 0. Hence

R′
4 = R′

0 ⊕ f(R3,K4)⊕ f(R∗
3,K4)

We can express it as

P (y)⊕ P (y∗) = R′
4 ⊕R′

0

y′ = P−1(R′
4 ⊕R′

0)

R′
4 and R′

0 are known from the plaintexts and the corresponding ciphertexts. y′ is the
output xor of fourth round. We know that R3 = L4 and R∗

3 = L∗
4. So we can calculate

inputs to the fourth round from corresponding ciphertexts.

E = E(R3) = E(L4)

E∗ = E(R∗
3) = E(L∗

4)

The procedure below shows the steps for mounting probabilistic attack on 4-round DES:

Differential attack on 4-round DES

Input: L0R0 , L∗
0R

∗
0 , L4R4 and L∗

4R
∗
4

compute y′ = P−1(R′
4 ⊕R′

0)

compute E = E(L4), E∗ = E(L∗
4)

for i = 1 to 8 do
compute PossibleKeysi(Ei, E

∗
i , y

′
i) and update counter Ci

In deriving expression for R′
4 we have considered that R′

1 = 0..0. From the differential
characteristic this is correct with probability 1/4. That means the key bits we calculate
using above procedure are correct with probability 1/4. And with probability 3/4 we
may get random garbage values.

Definition: Suppose L0 ⊕ L∗
0 = L′

0 and R0 ⊕R∗
0 = R′

0 where L′
0R

′
0 is defined input

xor according to the characteristic. L0R0 and L∗
0R

∗
0 is called right pair if Li ⊕ L∗

i = L′
i

and Ri ⊕R∗
i = R′

i for all, 1 ≤ i ≤ n where L′
iR

′
i are from defined characteristic. And

the pair which do not satisfy these conditions are wrong pair.

Now we will define a filtering operation to remove wrong pairs from the input.

Filtering operation: A right pair is a pair of plaintexts which satisfy the probability
characteristic. In mounting attack on 4-round DES we have derived expression for R′

4

assuming R′
1 = 0..0. If the pair we are considering for computing possible key bits, is

right pair, it should give at least on possible key block for each s-box. This is due to
the reason that in right pair encryption process R′

n−1 gets encrypted to R′
n using key.

In case, we are not getting at least one key block for any of the s-boxes then that pair is
wrong pair. Giving at least one possible key for each s-box is necessary condition only.
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Table 6 Filtering operation example

Plaintext Ciphertext

A198F13F56C9C7C3 0879F9C68C2C5FAA
E190F13F52C9C7C3 40D5D36EEB99DE5F

The inputs to the fourth round function are,

E : 000001010000001111110011111111110011111000001100

E∗ : 001000000001011010101011111010100110101101011100

For the above plaintext pairs, the R0 and R∗
0 are.

R0 = 01010110110010011100011111000011

R∗
0 = 01010010110010011100011111000011

And R′
0 = R0 ⊕R∗

0 is

R′
0 = 00000100000000000000000000000000

From the corresponding ciphertexts R4 and R∗
4 are,

R4 = 10001100001011000101111110101010

R∗
4 = 11101011100110011101111001011111

Their exor is,

R′
4 = 01100111101101011000000111110101

R′
4 ⊕R′

0 = 01100011101101011000000111110101

From the expression we have derived for y′,

y′ = P−1(R′
4 ⊕R′

0) = 11000110111010001111001011010100

Table 7 Possible keys for wrong pair

s-box Ei E∗
i y′

i Possible keys for s-box i

1 000001 001000 1100 13, 15, 4, 6, 29, 31, 20, 22, 58, 51
2 010000 000001 0110 4, 21, 36, 44, 53, 61
3 001111 011010 1110 24, 20, 21, 13, 0, 1, 49, 36
4 110011 101011 1000 32, 56, 8, 12, 6, 30, 16, 20
5 111111 111010 1111 51, 54, 40, 41, 44, 45, 10, 15
6 110011 100110 0010 47, 41, 60, 58, 15, 26
7 111000 101101 1101 43, 62
8 001100 011100 0100

The s-box inputs and output xors and possible keys generated for each s-box are
tabulated in Table 7. The procedure to extract possible key bits for the given Ei, E∗

i ,
and y′i in previous sections.
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From Table 7, it is evident that possible keys for eighth s-box is empty set. So this
pair is wrong pair. Hence it will get discarded by filtering operation. Suppose we have
a pair for which |possible keysi| ≥ 1 for all 1 ≤ i ≤ 8 then it will survive the filtering
operation. That does not mean it is a right pair. Filtering operation helps in removing
wrong pairs.

Here, a bit string of length 6 is the binary representation of integers from 0 to 63,
which are indices of the counters.

After finding the index with maximum value in 8 different counters C1 to C8,
convert them into 6-bit binary string (note that the indices are considered in row by row
order). The subkey blocks for each s-box are:

[C1 : 010100]

[C2 : 100100]

[C3 : 001101]

[C4 : 001000]

[C5 : 101000]

[C6 : 111010]

[C7 : 100000]

[C8 : 101111]

K4 = 010100 100100 001101 001000 101000 111010 100000 101111

After doing inverse of PC-2 and applying inverse of PC-1 on these 48 bits we get,

00x11x1 0x10001 0100110 1000xx0 010x00x x000110 1110110 0100011

x here means unknown bit. As we have eight unknown bits we have to do exhaustive
search for 28 = 256 times. And along with that odd parity bits need to be added for
each 7-bit blocks. This gives us complete key. The key is

‘1A624C89520DEC46’

6 Attack on 5-round DES

We use the previously discussed method to mount an attack on 5-round DES. The
structure of 5-round DES This will again be a probabilistic attack. So we will use the
2-round probability characteristic, which is shown in Table 8.

Table 8 2-round probability characteristic

Lh′
0 = 00200008 Rh′

0 = 00000400

Lh′
1 = 00000400 Rh′

1 = 00000000 p = 1/4

Lh′
2 = 00000000 Rh′

2 = 00000400 p = 1
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Figure 7 5-round DES structure

The expression for R′
5 is

R5 = L4 ⊕ f(R4,K5)

R5 = R3 ⊕ f(R4,K5)

R5 = L2 ⊕ f(R2,K3)⊕ f(R4,K5)

R∗
5 = L∗

2 ⊕ f(R∗
2,K3)⊕ f(R∗

4,K5)

R′
5 = L′

2 ⊕ f(R2,K3)⊕ f(R4,K5)⊕ f(R∗
2,K3)⊕ f(R∗

4,K5)

From the probability characteristic L′
2 = 0. So the expression for R′

5 will be

R′
5 = f(R2,K3)⊕ f(R4,K5)⊕ f(R∗

2,K3)⊕ f(R∗
4,K5)

The expansion of R′
2 is , (Note R′

2 is taken from Table 8, which has 2-round probability
characteristic.)

000000 000000 000000 000000 000000 001000 000000 000000

In the third round except S6 all the s-boxes are getting zero input difference. So for
these s-boxes sub-block of R2 and R∗

2 are same. The expression gets simplified to

R′
5 = f(R4,K5)⊕ f(R∗

4,K5)
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We denote f(R4,K5) and f(R∗
4,K5) with P (y) and P (y∗) as we did in previous

sections.

R′
5 = P (y)⊕ P (y∗)

y′ = P−1(R′
5)

The expressions for inputs to the fifth round are:

E = E(L5)

E∗ = E(L∗
5)

R′
5, L5 L

∗
5 are known from the pair of plaintexts and their corresponding ciphertexts.

The filtering operation used in 4-round cryptanalysis will be used here also to avoid
unnecessary garbage values while counting the key bits. The procedure to mount attack
is shown below.

Procedure for mounting attack on 5-round DES

Input:
plaintexts pair: L0R0, L∗

0R
∗
0

corresponding ciphertexts pair: L5R5, L∗
5R

∗
5

for each pair
compute y′ = P−1(Rh′

5)

compute E = E(L5), E∗ = E(L∗
5)

for i = 1, 2, 3, 4, 5, 7, 8

compute possible keys (Ei, E∗
i , yi)

update counter Ci

After experimenting the sample input consisting of 50 pairs of plaintexts which satisfy
the input difference as in the probability characteristic, using the above procedure we
will get the maximum values in each counters ranging from C0 to C8.

Now, we will take the index with maximum value from each counter and convert it
to 6-bit binary string then K5 including unknown bits is,

000010 001101 000100 010101 111001 XXXXXX 111110 010010

After applying inverse of PC2 on K5, the key will be:

110101 10x100 00100x 010x00 x0001x 10x1x0 0x1x11 x1x00x 10x10x11

After shifting right circularly by 8 bits (2 + 2 + 2 + 1 + 1 in reverse)

0x00x00011010110x10000100x0110x10x111x10x1x00x1x11x1x00x

The number of unknown bits is 14. So the exhaustive search space size is 214 = 16384.
The final key after adding odd parity is

‘1A624C89520DEC46’
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7 Attack on 6-round DES

We now extend this attack to 6-round DES. To attack 6-round DES, we begin with
plaintext pair L0R0 and L∗

0R
∗
0 and their ciphertext pair L6R6 and L∗

6R
∗
6. A 6-round

DES structure is shown in Figure 8.

Figure 8 6-round DES structure

We will use 3-round characteristic given in Table 9, to attack 6-round DES.

Table 9 3-round characteristic

L′
0 = 40080000 R′

0 = 04000000
L′

1 = 04000000 R′
1 = 00000000

L′
2 = 00000000 R′

2 = 04000000
L′

3 = 04000000 R′
3 = 40080000

From Figure 8, we can express R6 as:

R6 = L5 ⊕ F (R5,K6) (16)



20 V. Tiwari et al.

Since L5 = R4, we can rewrite above equation

R6 = R4 ⊕ F (R5,K6) (17)

Since R4 = L3 ⊕ f(R3,K4) we have,

R6 = L3 ⊕ F (R3,K4)⊕ F (R5,K6) (18)

With L∗
0R

∗
0 as input to Figure 8, R∗

6 can be written as,

R∗
6 = L∗

3 ⊕ F (R∗
3,K4)⊕ f(R∗

5,K6) (19)

R′
6 = R6 ⊕R∗

6. So,

R′
6 = L3 ⊕ F (R3,K4)⊕ F (R5,K6)⊕ L∗

3 ⊕ F (R∗
3,K4)⊕ F (R∗

5,K6) (20)

As L3 ⊕ L3∗ = L′
3,

R′
6 = L′

3 ⊕ F (R3,K4)⊕ F (R∗
3,K4)⊕ F (R5,K6)⊕ F (R∗

5,K6) (21)

By taking R3 = R∗
3 we get,

R′
6 = L′

3 ⊕ F (R5,K6)⊕ F (R∗
5,K6) (22)

We know R′
6 and L′

3 (from Table 9) so we can rewrite above equation as,

R′
6 ⊕ L′

3 = F (R5,K6)⊕ F (R∗
5,K6) (23)

Let H and H∗ be the two outputs of the eight s-boxes in round function. Then,

F (R5,K6) = P (H) and F (R∗
5,K6) = P (H∗)

where P performs the permutation function. Then,

P (H)⊕ P (H∗) = F (R5K6)⊕ F (R∗
5,K6)

H ′ = H ⊕H∗ = P−1(R′
6 ⊕ L′

3) (24)

From Figure 8, R5 = L6 and R∗
5 = L∗

6 are known, by this we can compute,

G = E(L6) (25)

and

G∗ = E(L∗
6) (26)

using the expansion function E. G and G∗ are the input to the s-boxes in the sixth
round.
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From Table 9, we have L′
3 = 04000000 and R′

3 = 40080000. The input x-or to the
s-boxes in round 4 is E(R′

3), which is,

0010000000000000010100...0.

where E is the expansion function. As we know input to the each of the eight s-boxes
is 6-bit, in this case the input x-or to S2, S5, S6, S7 and S8 is zero and hence their
output x-or will also be zero for round 4. This means we can compute output of only
these five s-boxes in sixth round.

To attack, we need to compute G, G∗ & H ′ and then find Pairs(G′
i & H ′

i) to find
values in counter arrays J2, J5, J6, J7 and J8 corresponding to s-boxes S2, S5, S6, S7
and S8. With right plaintext-ciphertext pair we will get correct values in J array and
wrong pair will give incorrect H ′ and thus wrong value of Pairs(G′

i & H ′
i).

Wrong pair can be detected in the following manner. Suppose we have pair
(hexadecimal format).

Plaintext Ciphertext

9468A0BE00166155 3D6A906A6566D0BF
D460A0BE04166155 3BC3B236398379E1

For this pair we will find G, G∗ & H ′ as we did in 3-round attack. Here the input to
s-boxes and their outputs are computed as:

Table 10 Sample S-box input and S-box output

J Gi G∗
i H ′

i

2 111010 110111 0110
5 110010 110110 0100
6 100000 100100 1111
7 001101 000110 0000
8 010100 101100 1001

Now using G′&H ′, we will find Pairs(G′
i & H ′

i) and then Ji ∈ Pairs(G′
i & H ′

i) for
i = 2, 5, 6, 7, 8. This is as follows:

Table 11 Values of counter array J2, J5, J6, J7, J8

J Ji ∈ Pairs(G′
i, H

′
i)

2
5
6 4, 8, 12, 16, 41, 45, 52, 56
7
8 31, 39

From Table 11, we observe that J2,J5 and J7 are empty, so this pair is a wrong pair and
will be discarded.
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Thus, to survive the filtering operation, a pair should be such that Ji > 0 for i =
2, 5, 6, 7, 8.

For 6-round attack we generated plaintext pairs satisfying input x-or L′
0 and R′

0

given in Table 9 and encrypted them with some random but same key to get ciphertext.
Then applied filtering operation to get right pairs.

These right pairs give output in counter arrays as shown below:

J2 = 7 6 10 10 8 8 11 6 6 8 10 11 6 8 9 7 8 10 7 7 6 6 5 10 10 29 9 8 7 6 5
10 5 8 8 8 7 8 5 7 6 9 7 5 10 9 8 8 8 8 7 8 9 5 10 10 11 7 8 7 8 6 7 9.

J5 = 6 5 6 5 7 6 5 4 5 4 4 3 5 6 2 3 5 3 5 5 3 1 2 4 4 5 0 4 3 3 4 4 5 4 6 1
2 3 6 3 3 1 5 2 2 5 1 3 12 3 2 5 5 9 1 4 6 6 9 2 4 6 3 4.

J6 = 5 6 5 5 3 6 7 11 28 9 6 6 6 9 7 9 6 5 7 4 5 2 10 4 5 6 4 6 7 6 10 5 8
6 5 5 3 2 4 4 6 8 5 10 6 11 5 7 8 8 5 6 6 6 4 7 6 7 6 6 2 6 5.

J7 = 7 3 3 3 2 2 4 4 4 3 2 4 6 7 5 7 6 4 7 4 5 7 4 1 1 7 3 3 3 3 4 5 4 5 3 1
4 5 3 7 3 4 23 3 4 3 5 3 5 3 1 2 3 3 7 6 6 2 3 6 2 4 4 6.

J8 = 1 1 5 5 0 1 3 4 1 4 3 2 4 6 4 5 3 4 2 5 8 3 5 5 2 5 2 1 4 5 4 3 7 4 7
20 2 1 7 4 5 3 6 3 1 2 5 5 3 4 5 0 5 6 2 5 6 3 4 3 2 4 3 3.

The unique values present in each of these array are at the positions:

J2: 25 → 011001
J5: 48 → 110000
J6: 9 → 001001
J7: 42 → 101010
J8: 35 → 100011

This gives us 30 bits out of 48 key bits as done in 3-round attack. We will use another
3-round characteristic given in Table 12 to get more key bits. This will give us 12 more
key bits by giving values in J1 and J4 array as,

J1: 55 → 110111
J4: 18 → 010010

Table 12 Another 3-round characteristic

L′
0 = 00200008 R′

0 = 00000400
L′

1 = 00000400 R′
1 = 00000000

L′
2 = 00000000 R′

2 = 00000400
L′

3 = 00000400 R′
3 = 00200008

Now we have 42 key bits. These key bits are shown below in Table 13. Here ’-1’
denotes unknown key bits as J3 is still not known.

We will apply key schedule of round 6 given in Table 14 on these 48 key bits. The
key schedule is of 56 bits as we have seen in 3-round attack.
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Table 13 Output of eight counter arrays in 6-round attack

J1: 1 1 0 1 1 1
J2: 0 1 1 0 0 1
J3: –1 –1 –1 –1 –1 –1
J4: 0 1 0 0 1 0
J5: 1 1 0 0 0 0
J6: 0 0 1 0 0 1
J7: 1 0 1 0 1 0
J8: 1 0 0 0 1 1

Table 14 Key schedule for round 6

3 44 27 17 42 10 26 50 60 2 41 35
25 57 19 18 1 51 52 59 58 49 11 34
13 23 30 45 63 62 38 21 31 12 14 55
20 47 29 54 6 15 4 5 39 53 46 22

Now, we have total of 14 unknown key bits which are computed using exhaustive
search. To recover 64-bit key, odd parity will be added after every seventh key bit. The
result after applying key scheduling (including parity bit) is shown below in Table 15.

Table 15 Result after applying 6-round key schedule

–1 0 1 1 0 1 –1 –1
–1 1 1 0 1 0 0 –1
1 –1 –1 1 0 1 1 –1
–1 0 0 –1 1 0 1 –1
–1 0 1 –1 –1 0 0 –1
0 1 –1 1 0 1 0 –1
0 1 –1 0 0 0 1 –1
–1 0 1 1 –1 0 0 –1

The final key (in hexadecimal format) obtained is:

‘34E9F71820756231’

8 Attack on 7-round and 8-round DES

In cryptanalysis of 7-round DES we have to use 4-round probability characteristic.
The following probability characteristic given in Table 16, is used with differential
probability p = 1

2621.44 .
The attack on 7-round DES as shown in Figure 9, we starts with choosing a pair of

plaintexts L0R0, L∗
0R

∗
0 and collecting the corresponding ciphertexts L7R7, L∗

7R
∗
7 where

L′
0 = 405C0000 and R′

0 = 04000000. We write expression for R7 and expand it so that
it can be expressed in terms of L4 and R4.

R7 = L6 ⊕ f(R6,K7)
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R7 = R5 ⊕ f(R6,K7)

R7 = L4 ⊕ f(R4,K5)⊕ f(R6,K7)

Table 16 4-round characteristic

L′
0 = 405C0000 R′

0 = 04000000

L′
1 = 04000000 R′

1 = 00540000 p =
1

4

L′
2 = 00540000 R′

2 = 00000000 p =
10.16

64.64

L′
3 = 00000000 R′

3 = 00540008 p = 1

L′
4 = 00540000 R′

4 = 04000000 p =
10.16

64.64

Figure 9 7-round DES structure
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Similarly,

R∗
7 = L∗

4 ⊕ f(R∗
4,K5)⊕ f(R∗

6,K7)

And xor of R7 and R∗
7 is,

R′
7 = L′

4 ⊕ f(R4,K5)⊕ f(R6,K7)⊕ f(R∗
4,K5)⊕ f(R∗

6,K7)

From the probability characteristic L′
4 and R′

4 are known. R′
4 from Table 16 can be

expanded using expansion and permutation function to,

000000 001000 000000 000000 000000 000000 000000 000000

From this expansion it is evident that, except S2 all the S-boxes are getting zero input
x-or in the fifth round. So their fifth round output xor will also be zero. So R′

7 is,

R′
7 = L′

4 ⊕ f(R6,K7)⊕ f(R∗
6,K7)

As in previous chapters, we denote f(R6,K7) and f(R∗
6,K7) with P (y) and P (y∗)

where P is permutation box in round function and y is output of substitution in round
function.

P (y)⊕ P (y∗) = R′
7 ⊕ L′

4

y′ = P−1(R′
7 ⊕ L′

4)

This is output xor of substitution in seventh round. And the inputs to the substitution in
seventh round are,

E = E(L7)

E∗ = E(L∗
7)

Now we use inputs and output xors to calculate possible keys using 7 counters namely
C1, C2, C3, C4, C5, C6, C7 as these s-boxes are getting zero input difference in fifth
round. This complete procedure can be explained briefly as follows:

Algorithm for 7-round

Input:
Pair of plaintexts: L0R0, L∗

0R
∗
0 which satisfy the condition that L′

0 = 405C0000 and
R′

0 = 04000000

Corresponding ciphertexts: L7R7, L∗
7R

∗
7

for each pair of plaintexts
compute y′ = P−1(R′

7 ⊕ L′
4)

L′
4 is taken from the probability characteristic.

compute E = E(L7), E∗ = E(L∗
7)

for i = 1, 3, 4, 5, 6, 7, 8

compute possible keys (Ei, E∗
i , yi)

update counter Ci

With this procedure 42 bits of key can be retrieved. For the remaining key bits one has
to do exhaustive search with search space 214 = 16,384.



26 V. Tiwari et al.

Attack on 8-round DES

As we already know that for any n-round DES we need probability characteristic with
n-3 rounds. So the Table 17 shows 5 round characteristic to be used for 8-round
cryptanalysis as shown in Figure 10.

Table 17 5-round characteristic 1

L′
0 = 405C0000 R′

0 = 04000000

L′
1 = 04000000 R′

1 = 00540000 p =
1

4

L′
2 = 00540000 R′

2 = 00000000 p =
10.16

64.64

L′
3 = 00000000 R′

3 = 00540008 p = 1

L′
4 = 00540000 R′

4 = 04000000 p =
10.16

64.64

L′
5 = 04000000 R′

5 = 405C0000 p =
1

4

The expression for R8 is,

R8 = L5 ⊕ f(R5,K6)⊕ f(R7,K8)

Similarly R∗
8 is,

R∗
8 =∗ ⊕f(R∗

5,K6)⊕ f(R∗
7,K8)

And R′
8 is,

R′
8 = L5 ⊕ f(R5,K6)⊕ f(R7,K8)⊕ L∗

5 ⊕ f(R∗
5,K6)⊕ f(R∗

7,K8)

R′
8 = L′

5 ⊕ f(R5,K6)⊕ f(R7,K8)⊕ f(R∗
5,K6)⊕ f(R∗

7,K8)

From the probability characteristic R′
5 is known. And if we expand and permute it,

001000 000000 001011 111000 000000 000000 000000 000000

So for S2, S5, S6, S7, S8,

R′
8 = L′

5 ⊕ f(R7,K8)⊕ f(R∗
7,K8)

R′
8 = L′

5 ⊕ P (y)⊕ P (y∗)

y′ = P−1(R′
8 ⊕ L′

5)

So from this we can calculate 30 key bits. For the remaining key bits we need another
probability characteristic which is shown in Table 18.

The expansion of R′
5 is,

000000 001000 000000 001000 000000 001111 110000 000000

This characteristic can result in 18 key bits. For the remaining key bits we need to do
exhaustive search. The number of pairs need to be tried for this is around 4 lacs for each
probability characteristic. To increase the probability of getting the key we can include
some more filtering operations as discussed in previous sections.
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Figure 10 8-round DES structure

Table 18 5-round characteristic 2

L′
0 = 04040780 R′

0 = 00202000

L′
1 = 00202000 R′

1 = 00000600 p =
10.12

64.64

L′
2 = 00000600 R′

2 = 00000000 p =
10

64

L′
3 = 00000000 R′

3 = 00000600 p = 1

L′
4 = 00000600 R′

4 = 00202000 p =
10

64

L′
5 = 00202000 R′

5 = 04040780 p =
10.12

64.64
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9 Conclusions

The security of iterated ciphers and hash functions has been active and focussed research
area for several years. DES is one of the widely known symmetric cryptosystem. In
differential cryptanalysis, which has attracted a lot of researchers throughout the world
in the area of cryptography, the main task is to study the propagation of differences from
round to round inside the cipher and find specific differences, which propagate with
relatively high probability. Such pairs of input-output differences can be used to recover
some bits of the secret key. Here, in this paper, we have applied this cryptanalysis
technique to DES reduced to 3-round, 4-round, 5-round and 6-round where we have
differentiated between wrong and right pairs so that we can discard wrong pairs to get
relevant key bits and finally could able to retrieve the correct key. Further, we performed
the attack procedure for reduced 7-round and 8-round. Our cryptanalysis presented in
this paper will surely be beneficial for extending the cryptanalysis procedure on further
rounds.
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