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Abstract: We propose a geostatistical technique based on point-centred  
semi-variograms that can be used to derive valuable information about the 
spatial representativeness of air quality monitoring sites. Whereas classical 
geostatistics describes the spatial correlation structure of a concentration field 
in terms of the variogram, point-centred variography is based on the average of 
squared concentration differences observed in pairs formed from a particular 
central point and the set of all other points in the domain. It thereby places a 
monitoring station in the context of the local or regional air quality pattern. We 
demonstrate how a mathematical inversion of the point-centred variogram can 
provide estimates of the extent of the representativeness area of a monitoring 
site. The application of this approach is tested on a set of modelling data from 
the city of Antwerp, which was used for the FAIRMODE/AQUILA 
intercomparison exercise of methods for the assessment of spatial 
representativeness. 
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1 Introduction 

The key question about the spatial representativeness (SR) of ambient air quality 
measurements is to what extent a point observation at a particular monitoring site can be 
extended to conclude about the air pollutant concentrations around it. From a regulatory 
point of view, the European Commission has worked intensively on the implementation 
of a harmonised programme for the monitoring of air pollution. The European Directives 
2008/50/EC and 2004/107/EC aim to improve the quality of measurements and data 
collection, to ensure that the information on air pollution is sufficiently representative and 
comparable across the community. However, though these directives include several 
considerations about the order of magnitude of the SR of a monitoring site, no detailed 
provisions on the methods for assessing SR are provided. Also in the scientific literature, 
no well-established procedures have been identified so far (Kracht et al. 2017b). 

Commonly used definitions for the spatial representativeness of an air quality 
monitoring site are usually based on an evaluation of the similarity of pollutant 
concentrations around this point. Hence, in its most basic definition the 
representativeness area is described by the set of all locations where the concentration of 
a pollutant does not differ from the measurements at the central point (monitoring station) 
by more than a certain threshold. Whereas in this context classical geostatistical analysis  
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would describe the spatial correlation structure of the whole concentration field in terms 
of the variogram, the point centred variogram is based on the average of squared 
concentration differences observed in pairs formed between a particular central point and 
the set of all other points in the domain.  

Point centred variography thus places a monitoring station in the context of the local 
or regional air quality pattern. It thereby enables systematic evaluation of the spatial 
relationship between point observations of pollutant concentrations at a particular 
monitoring site and the corresponding concentration field within its immediate and/or 
wider environment. In a final step, a mathematical inversion of the point centred 
variogram can be linked to the data quality objectives of the European Directive 
2008/50/EC, thus providing information about the extent of the spatial representativeness 
area. 

2 Mathematical framework 

2.1 The point centred semivariance 

The point centred experimental semivariance is defined as one half of the average of 
squared differences within data pairs formed between a particular central point (cp) and 
all other points in the domain that are separated from this central point by a lag distance 
h: 

( ) ( )
,

2

,

1 1( )
2

cp h

cp cp cp
cp h N

γ h Z s Z s h
N

⎡ ⎤= − +⎣ ⎦∑  (1) 

where Ncp,h is the total number of data pairs formed with the central point at lag distance 
h and Z(scp) and Z(scp + h) are the values of Z at the corresponding locations (scp) and  
(scp + h). 

As for the traditional experimental variogram, the lag distance h can be accompanied 
by a tolerance interval to create distance classes .jh  For each lag class, the point centred 
experimental semivariance is then estimated as: 
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Likewise, a point centred variogram cloud collecting the individual point-pair 
contributions to the final point centred variogram can be created. If n is the total number 
of observations within a spatial dataset, the full point centred variogram cloud consists of 
Nfull cloud, cp point pairs according to: 

, ( 1)full cloud cpN n= −  (3) 

For practical reasons, it can be helpful to introduce a maximum spatial separation 
distance hcutoff up to which point pairs are included into the point centred semivariance 
estimates. The number of point pairs in the variogram cloud then reduces according to: 

( ), , ,cloud full cloud cp cloud full cloud up cutoffN N with N f N h≤ =  (4) 
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In common geostatistical applications, the experimental semivariance values are often 
approximated by a simple continuous model function in which the semi-variance γ is 
described as a function of lag distance h. Such a model fit is referred to as the theoretical 
variogram. In this context the Gaussian, the exponential or the spherical variogram 
models are the most commonly used. The spherical model [equation 5(a)] is often 
considered the best choice when spatial autocorrelation decreases to a point after which it 
becomes zero.  

( )3
0 1

0 1

( ) 1.5 0.5 0

( )

h h
a aγ h C C if h a

γ h C C if h a

⎡ ⎤= + − ≤ ≤⎣ ⎦
= + >

 (5a) 

For the point centred variogram, equation 5(a) straightforwardly reformulates to:  

( ) ( )
( )

3
0 1

0 1

1.5 0.5 0cp cph h
cp cp cpa a

cp cp cp

γ h C C if h a

γ h C C if h a

⎡ ⎤= + − ≤ ≤⎢ ⎥⎣ ⎦
= + >

 (5b) 

which represents the point centred spherical variogram model. 
The parameters of the spherical model are the nugget C0, the partial sill C1, and the 

range a. The nugget variance C0 represents the variability of the observations at small 
distances (tending towards 0). The empirical nugget variance is unknown since it is the 
value of the theoretical variogram at the origin. The nugget parameter C0 is thus 
estimated by extrapolating the variogram towards h = 0. From this point, the 
semivariance increases until the full sill variance C0 + C1 is reached at a lag distance 
called the range (a). The range provides the distance beyond which semivariances remain 
constant. Up to this distance, observations of the regionalised variable in the sampling 
locations are correlated, beyond this distance they must be considered to be spatially 
independent. Note specifically that the term partial sill is used to denote C1, whereas the 
term sill denotes C0 + C1. 

In the context of the assessments presented in this exercise, we focus on the use of the 
spherical model. However, it can be useful to also evaluate the use of alternative 
variogram models. For example the use of a power model might be considered if the 
established variograms do not have well defined sills. 

Comparing the traditional variogram and the point centred variogram it should be 
noted that different types of variograms are needed for different purposes. For its scope 
of applications, in fact, the point centred variogram γcp(h) does not serve as a substitute 
for the traditional variogram γ(h), in the sense that geostatistical methods like kriging 
require a model for the traditional variogram. Rather than this, the aim of the point 
centred variogram is to provide additional information and a clearer description of the 
spatial continuity around a central reference point. 

2.2 Interrelation between the point centred variogram and spatial 
representativeness 

In the following we will demonstrate the link between the information provided by point 
centred variography and the limits of the spatial representativeness area. In fact, most of 
the commonly used definitions of spatial representativeness are based on the similarity of 
concentrations of a specific pollutant around a monitoring site. In this way, the 
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representativeness area is defined as the area where the concentration z(xi) at locations xi 
does not differ from the concentration z(xcp) measured at the monitoring station located at 
xcp (central point) by more than a specified threshold  Δz. 

The point centred semivariance in effect provides a measure of the dissimilarity 
between the pollutant concentrations observed at different locations and the 
corresponding reference concentration observed at the central point xcp. Let hSR be the lag 
distance at the limits of spatial representativeness around the central point xcp of a point 
centred variogram, and z(xcp + hSR) the pollutant concentration at locations positioned at 
this limit. The semivariance at the limits of spatial representativeness can then be 
calculated as 

( ) ( ) ( )( ) ( ) ( )( )( )221 1 Δ
2 2SR cp cp SR cp cp thresholdγ h z x z x h z x z x z= − + = − +  (6) 

where Δzthreshold is the maximum permissible deviation of concentrations within the limits 
of spatial representativeness. This relationship can then be reduced to: 

( ) ( )21 Δ
2SR thresholdγ h z=  (7) 

which immediately provides the relevant threshold value for γ(hSR) in absolute units of 
the semivariance. The lag distance hSR can then be computed by inverting the 
corresponding semivariance model function obtained beforehand from a fit to the 
experimental data. 

When the point centred semivariance is calculated for log-transformed data, the 
threshold value γ(hSR) needs to be determined in a slightly different way. In this case 
equation (7) needs to be modified to: 

( ) ( )( ) ( )( )( )

( )( ) ( )( )( )

2

2

1 ln ln
2
1 ln ln Δ
2

SR cp cp SR

cp cp threshold

γ h z x z x h

z x z x z

= − +

= − +
 (8) 

which can be converted to: 
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2 2
Δ1 1 Δln ln 1

2 2
cp threshold threshold
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⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+
= = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (9) 

By introducing Δrzthreshold, which is the maximum relative deviation of concentrations 
permissible within the limits of spatial representativeness, this relationship can then be 
further reduced to: 

( ) ( )
( ) ( )( )

2
2Δ1 1ln 1 ln 1 Δ

2 2
r threshold cp

SR r threshold
cp

z z x
γ h z

z x

⎛ ⎞⎛ ⎞⋅
= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (10) 

In order to establish a suitable reference value for Δrzthreshold for the purpose of this 
exercise we can refer to the data quality objectives (DQO) provided in Annex 1 of the 
European Directive 2008/50/EC on ambient air quality and cleaner air for Europe. For 
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fixed measurements the uncertainties (expressed at a 95% confidence level) of the 
assessment methods are given as: 
Table 1 Data quality objectives used as a default input for the similarity criterion thresholds 

PM10 NO2 Ozone 

25 % 15 % 15 % 

We need to consider that these DQOs are expressed at the 95% confidence level, which 
corresponds to approximately two times the standard deviation (2σ-level), whereas the 
variogram is conventionally providing semivariance values corresponding to the 1σ-level. 

Considering this necessary conversion, the logarithmic semivariance threshold value 
for the lag distance corresponding to the limit of spatial representativeness (hSR) is thus 
finally calculated as: 

( )
2

1 ln 1
2 2SR

DQOγ h ⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (11) 

2.3 Inversion of the spherical variogram model 

In order to extract information about spatial representativeness, we need to solve the 
spherical model equation for the priori unknown lag distance h, at which a certain 
semivariance γ(h) is reached. For example, γ(h) might then be set to a predefined limit 
value γ(hSR) to still accept spatial representativeness. From equation [5(a)] (describing the 
spherical variogram model) we consider that if 0 ≤ h ≤ a the semivariance γ(h) is given 
by: 

( )3
0 1( ) 1.5 0.5h h

a aγ h C C ⎡ ⎤= + −⎣ ⎦  (12) 

which can be transformed to: 

( )30

1

( ) 1.5 0.5h h
a a

γ h C
C

−
= −  (13) 

Equation (13) can then easily be rearranged into the general form of the cubic equation: 

( )3 0

1

( )0.5 1.5 0h h
a a

γ h C
C

−
− + =  (14) 

And then into the depressed cubic form: 

03 2 3

1

( )3 * 2 0γ h Ch a h a
C

−
− + =  (15) 

In the general case, a cubic equation with real coefficients has three solutions, some of 
which may equal each other if they are real, and two of which may be complex  
non-real numbers. We can find these solutions by following Cardano’s method 
(Gerolamo Cardano, 1545). For doing this, we first define: 

23p a= −  (16) 
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1

( )2 γ h Cq a
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−
=  (17) 

and the discriminant D as being: 
3 2

3 2
p qD ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (18) 

In the case of D < 0 the cubic equation has three real roots. By using the trigonometric 
method these three solutions can be found to be: 
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3 3
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3 3 3

42 cos
3 3 3
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where φ is defined as: 

3
2

arccos

2
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q

p

⎛ ⎞
⎜ ⎟
⎜ ⎟

= −⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

φ  (20) 

From these three solutions h1, h2, h3 one particular solution hselect that is applicable for the 
inverted variogram model needs to be selected. For this selection, the criterion  

0 selecth a≤ ≤  (21) 

is applied. This is justified, because we started these derivations by assuming equation 
[5(a)], which defines the spherical variogram model for exactly this range of h values.  

In the case of D > 0 the cubic equation has one real root and two conjugated complex 
roots. In the case of D = 0 the cubic equation has three real roots, one of which is 
duplicated. However, in our application inverting the spherical variogram model we have 
not encountered any cases of D ≥ 0 so far. For brevity, the solutions for the cases of D > 0 
and of D = 0 are thus not presented here. 

Note that as an alternative procedure, an option for the numerical inversion of the 
variogram model can be used. In the same way as for the analytical solution, this 
numerical solution needs to be restricted within the boundaries of 0 and the range a. 

If, for the evaluation of spatial representativeness, an inversion of the variogram 
model is used, but the required semivariance γ(hSR) is not reached within the range of the 
variogram (i.e., the variogram’s total sill is smaller than the required γ(hSR) value), a 
specific exception handling needs to be applied. In such cases we chose to consider the 
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distance of spatial representativeness to equal the value of the variogram’s range 
parameter a [see equations 5(a) and 5(b)]. 

3 Numerical tools 

All computer codes used in this study were developed in the R environment (R Core 
Team, 2016). In order to extend the necessary capacities for geostatistical techniques, 
projections and spatial analyses, we included functionalities from the packages ‘sp’ 
(Pebesma and Bivand, 2016; Bivand et al., 2013), ‘gstat’ (Pebesma, 2004), ‘rgdal’ 
(Bivand et al., 2016), ‘raster’ (Hijmans, 2015). For data manipulation, filtering and 
working with time series we also used packages ‘data.table’ (Dowle et al., 2015) and 
‘zoo’ (Zeileis and Grothendieck, 2005). 

4 Application study 

The application of the point centred variography approach has been tested on a set of 
modelling data from the city of Antwerp. This dataset contains information at a very high 
spatial (street level) and temporal resolution for three main pollutants (PM10, NO2 and 
ozone), over the whole city. The underlying model results, among other features 
comprising gridded time series for a number of 341 virtual receptor points, have been 
prepared by VITO (Belgium) by applying the RIO-IFDM-OSPM model chain for the 
model year 2012 (e.g., Lefebvre et al., 2013). Furthermore, the FAIRMODE (Forum for 
Air Quality Modelling in Europe) cross-cutting activity group on SR in cooperation with 
AQUILA (the European Network of Air Quality Reference Laboratories) recently 
concluded an intercomparison exercise on spatial representativeness methods, which was 
also based on this dataset (Kracht et al., 2016). A basic overview of the Antwerp 
modelling domain and the example of the annual average concentration field for NO2 are 
provided in Figure 1. 

From this dataset, the following three monitoring sites have been selected for closer 
evaluation:  

1 As an example for the traffic sites: 
• Borgerhout-Straatkant (Belgium Lambert 72 coordinates: 154396/211055): 

virtual point cp216. 

2 As examples for the urban background sites: 
• Antwerpen-Linkeroever (Belgium Lambert 72 coordinates: 150865/214046): 

virtual point cp7. 
• Schoten (Belgium Lambert 72 coordinates: 158560 / 215807): virtual point 

cp17. 

The choice of these three example sites was motivated by the fact that same set of 
stations were used by the FAIRMODE/AQUILA group in the course of the recently 
concluded FAIRMODE/AQUILA intercomparison exercise of methods for the 
assessment of spatial representativeness (Kracht et al., 2017b). It goes without saying that  
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besides of its relation to the station area type, the extent of spatial representativeness will 
depend on the pollutant and on the station type, but also on the individual spatial 
placement of the station and on the integration time scale. 

Figure 1 Overview of the Antwerp modelling domain, showing the annual average concentration 
field for NO2 (green background colours) (see online version for colours) 

 

Notes: A basic road network (brown lines) is drawn for orientation. Red stars highlight 
the three selected monitoring stations (‘Virtual Stations, 1st Selection’) 
Linkeroever (cp7), Schoten (cp17) and Borgerhout-Straatkant (cp216). 

5 Results 

The algorithms for point centred variography have been applied to the aggregated time 
series of the Antwerp dataset (time series of 14-day averages of PM10, NO2 and ozone, 
and 1-day averages of PM10). During a first exploration we tried to establish variogram 
model fits using a point centred spherical variogram model [equation 5(b)] applied to the 
immediate pollutant concentrations (µg/m3). However, the success rate for achieving 
acceptable model fits on this direct scale was not satisfactory and for a larger proportion 
of the data no model fit was found by the automatic algorithm at all. We thus decided to 
apply a log transformation to the concentration values first. Working on the log-scale 
indeed improved the success rate and quality of the model fits immediately (Kracht et al., 
2017a). 
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Table 2 Summary statistics of estimated limits of spatial representativeness (distSR) obtained 
from the inversion of point centred variograms established at the three monitoring 
stations Linkeroever (cp7), Schoten (cp17) and Borgerhout-Straatkant (cp216) for the 
modelling year 2012. Columns denoted as _all are considering all 341 virtual receptor 
points, columns denoted as cp7_noSC and cp17_noSC are considering only the 241 
non-street-canyon points, columns denoted as cp216_SC are considering only the 100 
street-canyon points 

NO2 (based on 14-day average concentrations, ΔNO2-threshold = 15%) 

 cp7_all cp7_noSC cp17_all cp17_noSC cp216_all cp216_SC 

distSR       
min 87 m 148 m 0 m 45 m 0 m 0 m 
1st quartile 116 m 218 m 52 m 87 m 0 m 0 m 
median 161 m 273 m 69 m 130 m 0 m 0 m 
3rd quartile 210 m 391 m 120 m 178 m 0 m 0 m 
max 385 m 679 m 175 m 237 m 0 m 0 m 

Criterion used       
Estimated from threshold (hSR) 100% 100% 100% 100% 100% 100% 
Estimated from range (a) 0% 0% 0% 0% 0% 0% 
NA because distSR > hcutoff 0% 0% 0% 0% 0% 0% 

Ozone (based on 14-day average concentrations, ΔO3-threshold = 15%) 
distSR       

min 0 m 0 m 131 m 143 m 0 m 0 m 
1st quartile 505 m 772 m 223 m 203 m 0 m 387 m 
median 1,111 m 929 m 298 m 262 m 180 m 658 m 
3rd quartile 2,068 m 1,627 m 455 m 452 m 298 m 1,261 m 
max 3,491 m 3,103 m 783 m 723 m 1,086 m 4,365 m 

Criterion used       
Estimated from threshold (hSR) 100% 100% 100% 100% 100% 100% 
Estimated from range (a) 0% 0% 0% 0% 0% 0% 
NA because distSR > hcutoff 0% 0% 0% 0% 0% 0% 

PM10 (based on 14-day average concentrations, ΔPM10-threshold = 25%) 
distSR       

min 3,822 m 5,976 m 1,381 m 1,836 m 0 m 1,325 m 
1st quartile 6,739 m 8,729 m 2,074 m 2,518 m 1,063 m 1,863 m 
median 7,457 m 10,864 m 2,670 m 3,251 m 1,925 m 2,586 m 
3rd quartile 9,477 m 12,413 m 3,530 m 4,880 m 4,015 m 4,334 m 
max 12,928 m 14,278 m 8,720 m 7,101 m 9,634 m 10,606 m 

Criterion used       
Estimated from threshold (hSR) 62% 65% 92% 81% 100% 100% 
Estimated from range (a) 19% 4% 8% 19% 0% 0% 
NA because distSR > hcutoff 19% 31% 0% 0% 0% 0% 
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Table 2 Summary statistics of estimated limits of spatial representativeness (distSR) obtained 
from the inversion of point centred variograms established at the three monitoring 
stations Linkeroever (cp7), Schoten (cp17) and Borgerhout-Straatkant (cp216) for the 
modelling year 2012. Columns denoted as _all are considering all 341 virtual receptor 
points, columns denoted as cp7_noSC and cp17_noSC are considering only the 241 
non-street-canyon points, columns denoted as cp216_SC are considering only the 100 
street-canyon points (continued) 

PM10-daily (based on daily average concentrations, ΔPM10-threshold = 25%) 
 cp7_all cp7_noSC cp17_all cp17_noSC cp216_all cp216_SC 

distSR       
min 854 m 1,242 m 600 m 750 m 0 m 0 m 
1st quartile 4,272 m 5,433 m 1,585 m 1,883 m 142 m 1,257 m 
median 5,864 m 7,124 m 2,277 m 2,653 m 1,529 m 2,348 m 
3rd quartile 7,972 m 9,610 m 3,797 m 4,585 m 3,829 m 4,445 m 
max 14,149 m 14,295 m 9,217 m 11,378 m 13,704 m 14,193 m 

Criterion used       
Estimated from threshold (hSR) 63% 63% 88% 82% 98% 98% 
Estimated from range (a) 20% 15% 12% 18% 0% 0% 
NA because distSR > hcutoff 17% 22% 0% 0% 2% 2% 

Following the model fitting of point centred variograms, individual estimates for the 
limits of spatial representativeness (distSR) have been calculated by inverting the fitted 
variogram model functions. Table 2 shows different summary statistics of the estimates 
obtained for the 14-day averages time series. In this table, a comparison is also made 
between results obtained by simultaneously considering all 341 virtual receptor points 
(columns denoted as _all), and results obtained by restricting the analysis to only those 
virtual receptor points of types matching to the respective station types of the 
corresponding central points. For this latter case, the 241 non-street-canyon points have 
exclusively been used for the evaluation of the two urban background sites Linkeroever 
and Schoten (columns denoted as cp7_noSC and cp17_noSC) and the 100 street-canyon 
points have exclusively been used for the evaluation of the traffic site Borgerhout-
Straatkant (columns denoted as cp216_SC). 

A more detailed breakdown of these results is presented in Figure 2, which presents 
the individual spatial representativeness distance estimates as annual 14-day averages 
time series. Again, results obtained by considering simultaneously all 341 virtual receptor 
points are compared with those obtained by restricting the analysis to the 241  
non-street-canyon points or the 100 street-canyon points. It should be noted that because 
of the different orders of magnitude of the spatial representativeness ranges obtained, a 
different axis scaling had to be used for each of the three sets of graphical panels 
representing NO2, O3 and PM10. 
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Figure 2 Annual time series of the spatial representativeness limits (distSR) for the two urban 
background sites Linkeroever (v7) and Schoten (v17), and for the traffic site 
Borgerhout-Straatkant (v216). Green (NO2), blue (O3) and brown bars (PM10) show 
results calculated by exclusively using corresponding station types: the 241 non-street-
canyon points matching for Linkeroever and Schoten, and the 100 street-canyon points 
matching for Borgerhout-Straatkant (see online version for colours) 

 

Notes: Superimposed black bars indicate results obtained by using all 341 virtual receptor 
points. Note that the x-axes for NO2 (left), O3 (centre) and PM10 (right) are on 
different scales. For better comparison, line charts of the NO2 and O3 results have 
therefore been additionally overlain onto bars of the PM10 panels (right). 
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Figure 3 Time series of spatial mean, spatial standard deviation, and relative spatial standard 
deviation of the 14-day average values of 341 virtual monitoring points for the 
modelling year 2012 (see online version for colours) 

  

 

Notes: These metrics reflect the overall means, the total standard deviations and total 
relative standard deviations of concentrations of all virtual monitoring points 
within the full spatial extent of the model domain as can be obtained for each  
14-day timestep. 

6 Discussion 

For the two background sites at cp7 and p17, median values of the spatial 
representativeness distance of PM10 range from 2,277 m (cp17_all for daily PM10) to 
10,864 m (cp7_noSC for 14-day average PM10). The median value for PM10 for the 
traffic site cp216 ranges from 1,529 m (cp216_all for daily PM10) to 2,586 m (cp216_SC 
for 14-day average PM10). For ozone 14-day averages the estimated limits of spatial 
representativeness for the two background sites cp7 and p17 present median values 
between 262 m (cp17_noSC) and 1,111 m (cp7_all). For NO2 the estimated limits of 
spatial representativeness are clearly shorter than for PM10 and ozone. Notably the traffic 
site cp216 was found to have a zero distance of spatial representativeness. 
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As a general observation, the estimated values for the limits of spatial 
representativeness are larger when variograms are based on data which are restricted to 
the corresponding station area types (_noSC for the background stations at cp7 and p17, 
and _SC for the traffic station at cp216), as compared to those results obtained by 
considering all virtual monitoring points simultaneously. This was expected, as the set of 
monitoring points becomes more homogeneous when street canyon and non-street 
canyon sites are distinguished from another. The only exceptions are in the two cases of 
ozone for the background stations cp7 and cp17, where the median limits of spatial 
representativeness are a little smaller for the restricted groups cp7_noSC and cp17_noSC 
as compared to the full set groups cp7_all and cp17_all.  

Another important observation is the very short extent of spatial representativeness of 
NO2 at the traffic site (Borgerhout-Straatkant, cp216), which always appeared to be 0 m, 
regardless of using the full set or the restricted set of virtual receptors. This result clearly 
makes sense, because NO2 is the most heterogeneous of the three air pollutants 
considered in this study, resulting into huge NO2 gradients particularly at the traffic site. 

With regard to the integration time-scales, the estimated distances of spatial 
representativeness tend to be higher for the PM10 data based on 14-day averages than for 
PM10 based on daily values (daily values have not been investigated for NO2 and ozone; 
they can thus not be compared). This observation corresponds well with our general 
expectations about the positive correlation between integration time-scales and the extent 
of the spatial representativeness areas. 

Time series of spatial representativeness distance estimates (Figure 2) reveal a clearly 
systematic pattern. The extent of spatial representativeness for NO2 is clearly larger 
during winter time, while it gets smaller during summer time. Ozone reveals an opposite 
behaviour, having a larger extent of spatial representativeness during summer, and a 
smaller extent of spatial representativeness during winter. A less clear pattern, however, 
is observed for PM10, although a small decrease of spatial representativeness can be 
observed in summer at stations Schoten and Boggerhout-Straatkant (apart from an 
isolated peak around the end of Mai). This decrease is likely caused by a decrease of 
PM10 concentrations during summer. 

It can be useful to compare these observations to the seasonal evolution of some basic 
statistical properties of the full set virtual monitoring points. For this purpose, Figure 3 
summarises annual time series of spatial mean, spatial standard deviation, and relative 
spatial standard deviation of the 14-day average values of 341 virtual monitoring points. 
These metrics reproduce the overall means, the total standard deviations and total relative 
standard deviations of the three pollutant concentrations within the full spatial extent of 
the model domain. Seasonal variations are not clearly pronounced for the absolute spatial 
standard deviations. In contrast, a strong mirror-inverted like progression of the relative 
standard deviations for NO2 and for ozone can be observed. This evolution of the relative 
standard deviations is in turn mainly caused by the corresponding annual pattern of 
absolute concentration variations: While NO2 concentrations tend to be higher in winter 
time and lower in summer time, their relative standard deviation is lower in winter and 
higher in summer. For ozone it is the opposite, with a higher relative standard deviation 
in winter, and a lower relative standard deviation in summer. With regards to the spatial 
representativeness, it is finally driven by the nature of its definition, that a concentration 
field with a high relative standard deviation (i.e., with steeper concentration gradients) 
will have more clearly separated (i.e., less extended) areas of spatial representativeness. 
In turn, a concentration field with a lower relative standard deviation (i.e., with shallow 
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spatial gradients) will have less clearly separated areas of spatial representativeness, 
which consequently have larger extents. 

In summary, the three virtual monitoring stations can consistently be ranked for all 
three pollutants: The distance of spatial representativeness tends to be highest for virtual 
station cp7 (corresponding to the urban background station Antwerpen-Linkeroever), 
second highest for virtual station cp17 (corresponding to the urban background station 
Schoten) and lowest for virtual station cp216 (corresponding to the traffic station 
Borgerhout-Straatkant). Again, this finding corresponds with our general expectations 
about the relations between spatial representativeness and station types. 

7 Summary and conclusions 

Depending on the spatial scale of the investigation, point centred variography places a 
monitoring station in the context of the local or regional air quality pattern. It thereby 
enables systematic evaluation of the spatial relationship between point observations of 
pollutant concentrations at this monitoring site and the corresponding concentration fields 
within its immediate and/or wider environment. Point centred variography can thus 
provide valuable information with regard to the spatial representativeness of the air 
quality monitoring site. The point centred variogram, however, does not serve as a 
substitute for the traditional variogram in the sense that geostatistical methods like 
kriging require a model fitted for the traditional variogram. 

Time series of spatial representativeness results have been inferred from the Antwerp 
dataset for three selected monitoring station locations. With regard to the transferability 
and generalisation of results, it needs to be pointed out that in this exercise the evaluation 
of spatial representativeness was specifically done from the methodological perspective 
of the point centred variography. A comparison with results obtained by other spatial 
representativeness approaches or based on different conceptualisations is not necessarily 
simply one-to-one. Rather, it should be anticipated that the integration of information 
obtained by different spatial representativeness methodologies requires a certain degree 
of technical effort and of expert knowledge to be applied. 

A set of methodological recommendations has been summarised in a recent JRC 
technical report (Kracht et al. 2017a) that can be used for planning further developments 
of this method. These proposals for further developments do specifically include 
suggestions for: 

1 possible variations of the underlying type of the variogram (directional variogram, 
relative variograms) 

2 modifications of the variogram model functions 

3 the criteria deployed for defining the limits of the spatial representativeness area 

4 the numerical procedures 

5 the pre-treatment and selection of data-points. 

In this present study we have applied the concept of a spatial representativeness distance 
(distSR), which in turn implies the assumption of a radially symmetric area of spatial 
representativeness. This corresponded to the use of an omni-directional variogram. 
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However, this approach is likely oversimplified and more detailed information (i.e., about 
the anisotropy of the variogram) could be extracted from the data (point 1 of the above 
list). In future developments it would thus be recommendable to extend the evaluation by 
applying directional variograms. Example given, this could be done by building 
directional variograms for the 0°–90°, 90°–180°, 180°–270°, and 270°–360° angular 
classes. A finer classification, although possibly desirable, might on the other hand be 
limited by the availability of data-points 

With reference to the point 2, it should be noted that in this present study we have 
focused on the use of a spherical variogram model. However, it is not intrinsically 
obvious that the spherical model is the optimal choice and it could be worth evaluating 
different variogram models as an alternative. A more detailed discussion on the use of 
alternative variogram models can be found in Kracht et al. (2017a), which also 
demonstrates an inversion of the exponential and of the Gaussian variogram model 
(mathematical inversion in order to extract information about spatial representativeness). 
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