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Abstract: In the last few years, many closed-loop control systems have been 
introduced in the automotive field to increase the level of safety and driving 
automation. For the integration of such systems, it is critical to estimate motion 
states and parameters of the vehicle that are not exactly known or that change 
over time. In order to estimate the motion states and parameters, a method 
based on PSO-RBF neural network is presented to solve problem of vehicle 
state estimation in vehicle handling dynamics. The basic idea behind the work 
was to identify several key parameters which affected the performance of 
vehicle by experimental data. Then the test data was input to the simulation 
model for network training and verification. The results show that the method 
can estimate vehicle state successfully with small absolute error of side slip 
angle in vehicle handling dynamics. Results are included to demonstrate the 
effectiveness of the estimation approach and its potential benefit towards the 
implementation of adaptive driving assistance systems or to automatically 
adjust the parameters of onboard controllers as well as the effectiveness of the 
proposed scheme in the estimation of states and unknown inputs.  
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1 Introduction 

The safety of vehicular traffic is the eternal theme of the development. Along with rapid 
increase in road traffic accidents, particularly viciously high incidence of traffic accidents, 
traffic safety problems have become increasingly prominent. Automotive engineering 
and research community along with car constructors are looking for solutions to reduce 
and prevent accidents, and as a consequence to improve the safety during vehicle driving. 

Vehicle status estimation has an important role in improving critical safety systems. 
With the increase in the accuracy of wheel speed sensors and yaw rate sensors, as well as 
the reliability of these sensors, state estimation is an effective way to improve the control 
system (such as ESP performance). Therefore, it is the key problem to study the state 
information of automobile dynamic control system accurately and in real time. 

The performance of driving safety systems may be improved if the unknown 
parameters of the underlying vehicle model can be measured and updated. Weight of the 
vehicle, road adhesion, drag coefficient and tyre cornering stiffness are examples of 
unknown parameters (Bektache et al., 2014; Funke and Gerdes, 2016; Rajaram and 
Subramanian, 2016; Chen et al., 2013a; Chen and Lee, 2011).  

The vehicle state estimation problem has been studied in the literatures. A brief 
review is presented in this section. 

Giulio et al. (2017) presented a model-based observer to estimate motion states and 
parameters of the vehicle that change over time with the purpose of increasing level of 
safety and driving automation. 

Fei et al. (2015) introduced a novel nonlinear observe based on a vehicle dynamics 
model and a simplified Pacejka tyre model in order to provide estimation of longitudinal 
and lateral vehicle velocities and the tyre-road friction coefficient for vehicle safety 
control systems, specifically anti-lock braking control. 

Pence et al. (2014) presented a recursive estimation/detection technique for reduced-
order state space systems by building a recursive state and parameter estimator on the 
framework of polynomial chaos theory and maximum likelihood estimation. 

Rath et al. (2015) developed a combination of nonlinear Lipschitz observer and 
modified super-twisting algorithm (STA) observer to estimate these unknown inputs and 
states simultaneously and also under Lipschitz conditions for the nonlinear functions, the 
convergence of the estimation error was established. 

Xu et al. (2016) proposed a fusion methodology for integrating a single-frequency 
double-antenna Global Positioning System (DA-GPS) with other low-cost in-vehicle 
sensors to achieve reliable estimation of both vehicle sideslip and yaw angles. 

Hui et al. (2016) developed an alternative approach which estimated the side slip 
angle with the measurements of relatively cheap sensors to monitor the lateral stability or 
improve the stability by using the feedback control. 

Bangji et al. (2016) presented a novel observer design for simultaneous estimation of 
vehicle steering angle and sideslip angle so that the estimation of sideslip angle does not 
require the measurement of steering angle and the estimate of steering angle can also be 
used for other purposes. 

Mourad et al. (2016) presented a nonlinear adaptive observer for the estimation of the 
wheel stiffness and radius which will be used for controller synthesis and supervision for 
vehicle applications. The proposed adaptive observer uses the angular velocity as an 
input of the system, whereas the angular position and the vehicle velocity are considered  
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as a measured state vector. The adaptive observer is designed based on a nonlinear model 
of the vehicle quarter model and the adaptive law of the parameters is derived using 
Lyapunov analysis. 

Ehsan et al. (2016) developed a longitudinal vehicle velocity estimator robust to road 
conditions by employing a tyre model at each corner and presented a new Kalman-based 
observer by considering tyre nonlinearities with a minimum number of required tyre 
parameters and the road condition as uncertainty. 

Freeman et al. (2016) investigated the performance of two control algorithms, sliding 
control and linear quadratic control for use in an autonomous run-off-road vehicle 
recovery system for vehicle state estimation and control. 

The above methods can solve the vehicle state estimation problem effectively but 
have some drawbacks such as difficulty in numbers of estimated parameters, dependency 
on precision of model of the vehicle.  

This paper aims to present an algorithm based on PSO-RBF neural network theory 
for vehicle state estimation problem. The method is used to estimate motion states and 
parameters of the vehicle that are not exactly known and that change over time.  
The rest of the paper is organised as follows: Section 2 presents the 7-DOF vehicle 
model. Section 3 presents the PSO-RBF neural network for vehicle state estimation 
problem. Section 4 illustrates the numerical simulation and discussion. Finally, Section 5 
summarises the conclusions and suggests future research directions. 

2 Nonlinear vehicle dynamics model 

2.1 Model of vehicle movement 

For simplicity, the movement of the vehicle is described by a 7-DOF vehicle model 
depicted in Figure 1. The vehicle model has the following longitudinal, lateral, yaw and 
turning degrees of freedom. 

Figure 1 7-DOF vehicle model 
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The differential equation of the movement of the vehicle is: 
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where 

cos sinxij xij yijF F F     

cos sinyij yij xijF F F     

It is assumed that the moment of inertia resistance and the role of air lift are ignored, and 
then the vertical load of each tyre can be described as: 
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The slip angle of each tyre can be obtained by the following formula (Wenzel et al., 
2007): 
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The side slip angle of the vehicle is: 

v
arctg

u
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The slip ratio of each tyre is: 
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where the wheel centre speed wiju  of each wheel can be obtained by the following 

formula (Kiencke and Nielsen, 2000): 
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 (6) 

where m is the vehicle mass, vcog is the centroid speed, Iz is the moment of inertia around 
the z axis, v and u are the lateral and longitudinal speed, Γ is the yaw moment around the 
z axis, αx and αy are the longitudinal and lateral acceleration, r is the yaw rate of the 
vehicle, β is the side slip angle, Fxij are the longitudinal forces generated on tyres, Fyij are 
the lateral forces generated in the tyres, Fzij is the vertical load of each wheel, tf and tr are 
the front and rear tracks, δ is the front steering angle, h is the centroid height, αij is the 
slip angle of each tyre, sij is the slip ratio of each tyre, Mzij is the aligning torque of each 
wheel, a and b are the distances of front and rear axles from the centre of gravity, 
L a b   is the wheelbase, re is the rolling radius of wheel, ϖij is the angular velocity of 
each wheel, uwij is the centre speed of each wheel. 

2.2 Tyre model 

In this paper the Pacejka tyre model is used to simulate the movement of the vehicle. For 
the model the tyre vertical load, side angle and slip rate are set as input variables. And the 
lateral force, longitudinal force and aligning torque can be calculated by equation (7) 
(Bakker and Pacejka, 1989). 

( ) sin( ( ( ))
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 (7) 

where the output Y represents the longitudinal force Fx and the lateral force Fy as well as 
the aligning torque Mz; the input X represents the slip ratio S and the slip angle α; 
B = 0.237, C = 1.65, D = 3610.5, E = 0.707, sv = 40.379, sh = 0.0473. 

2.3 Road model 

In this paper the double lane change test road is used for road input. The double lane 
change test road reflects the vehicle avoiding obstacles or overtaking in high-speed when 
operating the steering performance. 

The double lane change test road is shown in Figure 2. In Figure 2, 

0 1 2 4 2s s s s u    , 3s u , 5 5s u , 6 3s u . B is the lane change distance, B = 3.5 m. 

B1, B2 and B3 are the distances between the stakes, B1 = 1.1 L + 0.25 = 2.12 m, 
B2 = 1.2 L + 0.25 = 2.29 m, B3 = 1.3 L + 0.25 = 2.46 m, where L is the width of the 
vehicle, L = 1.7 m. 
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Figure 2 Double lane change test road (● stands for stake) 
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In realistic driving process, drivers’ ideal target trajectory should be low-level continuous 
smooth curve shown in Figure 3. And also, according to ISO/TR3888-2004, the 
trajectory of the vehicle traveling along the pylon course slalom test road should be 
described as a curve of order three with continuous first-order derivative transformed 
with cubic splines fitting: 
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where 
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From equation (8) it is easy to obtain the relationship between y, i.e. f(x) and x by 
substituting t with x/u.  
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where 0 0g e ; ( 1,2,3)j
i ig e u j  ; '

0 0h e ; ' ( 1,2,3)j
i ih e u j  . 
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Figure 3 Fitted double lane change test road 
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3 PSO-RBF neural network 

RBF neural network is a type of forward neural network. The first layer of the network is 
the input layer, composed of source node; the second layer is the hidden layer and the 
number of the hidden layer nodes depends on the specific problem; the third layer is the 
output layer responding to the input model (Lin et al., 2013; Jeon and Beak, 2011).  

The RBF used in the RBF neural network is the Gauss function. Then the output of 
the network is:  
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 (10) 

where xp is the p-th input sample, p = 1, 2,…, P, and P is the total number of samples; ci 
is the centre of the hidden layer node; ϖij is the connection weight of the hidden layer to 
the output layer, and i is the number of the hidden layer nodes in the neural network; yi is 
the actual output of the j-th output node of the network corresponding to the input 
sample; σ is the variance of the Gauss function. 

It is assumed that d is the expected output value of the sample, then the variance of 
the basis function can be expressed as (Chen et al., 2013b; Tan et al., 2011): 

2

1

1 m

i i i
i

d y c
P




   (11) 

The PO-RBF neural network requires training parameters such as the clustering centre of 
the radial basis function, the maximum distance of the centre of the radial basis and the 
weight between hidden layer and the output layer in the RBF neural network. The 
prediction is carried out in three phases. In the first stage, the centre of the RBF neural 
network is calculated by using the particle swarm optimisation algorithm. When the 
clustering centre of the radial basis function is calculated, the clustering centre is adjusted 
by the particle swarm optimisation algorithm, and the optimal clustering centre is the  
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final clustering centre of the RBF neural network. The second stage, the K-means 
clustering method, is used to calculate the width of the RBF neural network. In the third 
stage, the network is trained and the iterative calculation is repeated. 

During each iteration, the particles update their own speed and positions through 
individual extremes and global extremes: 

( 1) ( ) ( ) ( ) ( ) ( )
1 1 2 2( ) ( )m m m m m m

id id id id gd idv v c r P X c r P X       (12) 

( 1) ( ) ( 1) 1,2, , ; 1,2, ,m m m
id id idX X v d D i n       (13) 

where i is the i-th particle; ϖ is the inertia weight; m is the current number of iterations; d 
represents the d-th-dimension of the particle i; Xid is the position of the i-th particle; Pid is 
the individual optimal position of the i-th particle; Pgd is the position of the optimal 
fitness value for all particles; vid is the velocity of the particle i; c1, c2 is the acceleration 
factor; r1, r2 is the random number distributing between [0,1]. 

In the iterative process of the algorithm, the larger inertia weight ϖ is favourable to 
the global search and the smaller ϖ is more conducive to the local search. The linear 
recursive inertia weight is used in the calculation: 

max max( ) ( )( ) /start start endk T k T        (14) 

where ϖstart is the initial inertia weight; ϖend is the inertia weight iterating to the 
maximum value of times; Tmax is the maximum number of iterations (Zhang et al., 2016). 

The specific PSO-RBF algorithm flow is shown in Figure 4. 

Figure 4 PSO-RBF algorithm flow for vehicle state estimation 
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4 Simulation and discussion 

4.1 Output result 

1 Test objectives 

The double lane change test is operated to obtain the longitudinal and lateral velocity, 
yaw rate, lateral acceleration and other test data. The yaw rate and the lateral acceleration 
are measured values, which can be used as inputs to the neural network. 

2 Test procedure 

The iVRU-Fx gyroscope is equipped to obtain in real-time the yaw rate and lateral 
acceleration of the vehicle. The LC5100 non-contact speed meter and LC-1100 space 
filter speed sensor are used to measure the longitudinal and lateral velocities of the 
vehicle. This test uses a two-contact speed sensor layout, that is to say, two speed sensors 
are used to obtain the longitudinal and lateral velocities in the process of tracking the 
double lane change test road. 

The test procedure in accordance with ISO/TR3888-2004 is as follows: 

Step 1: Arranging stakes shown in Figure 2 and painting prescribed path on the ground 
according to the double lane change test road exactly.  

Step 2: Equipping the related equipments and then powering them so as to warm them up 
to normal operating temperature. 

Step 3: With an initial velocity of 80 km/h, the tested vehicle travels along the initial 
lane. And then, the tested vehicle implements a lane change manoeuvre to another lane 
rapidly and then returns to the initial lane as soon as possible without touching any part 
of the stakes. At the same time, the time history curves of the measured variables are 
recorded. 

Step 4: Repeating Step 3 process 12 times. 

The measured longitudinal speed, longitudinal acceleration and yaw rate of the vehicle 
obtained from the double line test are shown in Figures 5–7. 

Figure 5 Longitudinal speed 
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Figure 6 Longitudinal acceleration 
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Figure 7 Yaw rate 
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The measured signal of Figures 5–7 is input to the trained PSO-RBF network to obtain 
the estimation curves of the longitudinal speed, longitudinal acceleration and yaw rate, 
which are shown in Figures 8–10. 

Figure 8 Longitudinal speed 
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Figure 9 Longitudinal acceleration 
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Figure 10 Yaw rate 
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4.2 Evaluation of calculation accuracy 

In order to verify the superiority of the PSO-RBF neural network method, the RBF neural 
network prediction model is used for vehicle state estimation. The simulation results are 
shown in Figures 11–13. 

Figure 11 Longitudinal speed 
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Figure 12 Longitudinal acceleration 
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Figure 13 Yaw rate 
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The number of iterations required for different models to achieve convergence is 
different. The RBF neural network needs 125 times, and the optimised PSO-RBF neural 
network needs 75 times. The convergence rate of the PSO-RBF network is significantly 
faster than the other algorithm under the same conditions indicating that the 
generalisation ability is stronger than the other algorithm. The convergence rate of the 
RBF neural network can be improved by the particle swarm optimisation. 

Figure 14 shows the output error of side slip angle of the two different algorithms 
which are the RBF neural network and the PSO-RBF neural network. 

The main reasons for the error of the side slip angle are as follows: 

1 The 7-DOF vehicle model used in the estimation methods is relatively simple. The 
non-linear factors such as suspension is not taken into account, and the influence of 
damping in steering system and suspension system is neglected.  

2 The test value of the side slip angle also contains a certain measurement error. 

At the same time it can be seen that the RBF neural network error is between ± 30% and 
the optimised PSO-RBF neural network error is controlled in ± 10%. The PSO-RBF 
neural network in the prediction accuracy of vehicle state estimation is higher than that of 
the RBF neural network. The PSO-RBF neural network algorithm can combine the 
particle swarm algorithm and the RBF neural network to make it possible to improve 
accuracy and computational efficiency in dealing with complex system problems. 
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Figure 14 Error of side slip angle 

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

Time/s

E
rr

or
 o

f 
si

de
 s

li
p 

an
gl

e/
(

)

 

 

RBF
PSO-RBF

 

5 Conclusions 

In this paper, the vehicle state estimation scenario is analysed while the PSO-RBF neural 
network method is utilised for the vehicle state estimation problem. Accordingly,  
a 7-DOF simplified vehicle model and the Pacejka tyre model have been used to describe 
the motion of the vehicle. Then the PSO-RBF neural network is operated to solve the 
problem of vehicle state estimation in vehicle handling dynamics.  

To test the performance of the method, simulation is operated and it is shown that the 
vehicle states can be estimated successfully. This is a main benefit of this method for 
vehicle state estimation problem. 

Comparison of the results of the RBF neural network method and the PSO-RBF 
neural network method shows that the absolute error of the side slip angle solved by the 
PSO-RBF neural network method is smaller than that of the RBF neural network method, 
indicating that the PSO-RBF neural network method can estimate the vehicle states 
precisely comparing with other traditional methods. 

It is believed that the proposed method can considerably improve vehicle state 
estimation in vehicle handling dynamics. 
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